Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T15:14:28.470Z Has data issue: false hasContentIssue false

Mach's Principle

Published online by Cambridge University Press:  14 March 2022

Parry Moon
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts
Domina Eberle Spencer
Affiliation:
University of Connecticut, Storrs, Connecticut

Abstract

Recession of the galaxies indicates a repulsive force and suggests that Newton's formulation of gravitation is not complete. A possible modification is proposed, and this Neo-Newtonian equation allows a quantitative treatment of Mach's principle. It also limits the velocity of matter to c and gives a correct prediction for the perihelion of Mercury.

Type
Research Article
Copyright
Copyright © 1959 by Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 E. Mach: Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt (Leipzig, 1883).

2 H. Bondi: Cosmology (Cambridge Univ. Press, 1952).

3 M. F. Tisserand: “Sur les mouvements des planètes autour du soleil, d'après la loi électro-dynamique de Weber”, C.R., 75, 1872, p. 760; “Sur les mouvements des planètes, en supposant l'attraction représentée par l'une des lois électrodynamiques de Gauss ou de Weber”, C.R., 110, 1890, p. 313; M. Levy: “Sur l'application des lois électrodynamiques au mouvement des planètes”, C.R., 110, 1890, p. 545; W. Ritz: “Recherches critiques sur l'électrodynamiques générale”, Ann. d. Chimie et de Phys., 13, 1908, p. 145; T. J. J. See: Electrodynamic wave-theory of physical forces (Nichols, Lynn, Mass., Vol. I, 1917; Vol. II, 1922); A. O'Rahilly: Electromagnetics (Longmans, Green and Co., London, 1938, pp. 527, 544); F. W. Warburton: “The advance of the perihelion of mercury”, Phys. Rev., 70, 1946, p. 86; D. W. Sciama: “On the origin of inertia”, R. A. S. Monthly Notices, 113, 1953, p. 34.

4 E. A. Milne: “A Newtonian expanding universe”, Quar. J. Math., 5, 1934, p. 64; W. H. McCrea and E. A. Milne: “Newtonian universes and the curvature of space”, Quar. J. Math., 5, 1934, p. 73; W. H. McCrea: “The steady-state theory of the expanding universe”, Endeavour, 9, 1950, p. 3.

5 P. Moon and D. E. Spencer, “A new electrodynamics”, J. Franklin Inst., 257, 1954, p. 369; “Electro-magnetism without magnetism: an historical sketch”, Am. J. Phys., 22, 1954, p. 120; “Some electromagnetic paradoxes”, J. Franklin Inst., 260, 1955, p. 373.

6 P. Moon and D. E. Spencer: “Newtonian cosmologies”, to be published.

7 W. H. McCrea, “On Newtonian frames of reference”, Math. Gazette, 39, 1955, p. 287.

8 See, for instance, R. B. Lindsay: Physical mechanics, (Van Nostrand Co., New York, 1950, p. 71).

9 M. L. Humason, N. U. Mayall, and A. R. Sandage: “Redshifts and magnitudes of extra-galactic nebulae”, Astron. J., 61, 1956, p. 97.

10 Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, und Technik (Springer, Berlin, Vol. III, 1952).

11 As tabulated by C. L. Poor: Gravitation versus relativity (G. P. Putnam's Sons, New York, 1922, p. 191).

12 A. E. Eddington: The mathematical theory of relativity (Cambridge Univ. Press, 1924, p. 88).