Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-04T20:27:49.606Z Has data issue: false hasContentIssue false

Huygens on Inertial Structure and Relativity

Published online by Cambridge University Press:  01 January 2022

Abstract

I explain and assess here Huygens’s concept of relative motion. I show that it allows him to ground most of the Law of Inertia and also to explain rotation. Thereby his concept obviates the need for Newton’s absolute space. Thus, his account is a powerful foundation for mechanics, although not without some tension.

Type
Research Article
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

For deeply illuminating exchanges, I am greatly indebted to Nick Huggett, Katherine Brading, and Robert Rynasiewicz. For stimulating, constructive discussions, I am grateful to Alan Love, George E. Smith, Peter Distelzweig, David Marshall Miller, Ed Slowik, and Victor Boantza. For helpful feedback, I thank audiences at the University of Minnesota and the Max Planck Institute for History of Science.

References

Alexander, H. G., ed. 1970. The Leibniz-Clarke Correspondence. New York: Barnes & Noble.Google Scholar
Barbour, J. 2001. The Discovery of Dynamics. Cambridge: Cambridge University Press.Google Scholar
Borelli, G. A. 1667. De vi percussionis. Bologna.Google Scholar
Boulliau, I. 1645. Astronomia Philolaica. Paris.Google Scholar
Chareix, F. 2006. La philosophie naturelle de Christiaan Huygens. Paris: Vrin.Google Scholar
Descartes, R. 1644. Principia philosophiae. Amsterdam.Google Scholar
[du Châtelet, E. 1740. Institutions de physique. Paris.Google Scholar
Earman, J. 1989. World Enough and Space-Time. Cambridge, MA: MIT Press.Google Scholar
Euler, L. 1736. Mechanica. Bk. 1. St. Petersburg.Google Scholar
Euler, L. 1765. Theoria motus corporum solidorum seu rigidorum. Rostock.Google Scholar
Fabri, H. 1646. Tractatus physicus de motu locali. ed. Mousnier, P.. Lyon.Google Scholar
Friedman, M. 2013. Kant’s Construction of Nature. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Garber, D. 1992. Descartes’ Metaphysical Physics. Chicago: University of Chicago Press.Google Scholar
Gassendi, P. 1675. Institutio astronomica. 5th ed. London.Google Scholar
Horrocks, J. 1678. “Astronomia Kepleriana, defensa et promota.” In Opera posthuma, 1–239. London.Google Scholar
Huygens, C. 1728. Opera reliqua. Vol. 2. Amsterdam.Google Scholar
Huygens, C. 1888–1950. Oeuvres complètes. The Hague: Nijhoff.Google Scholar
Lansberg, P. 1651. Commentationes in motum terrae. Middelburg.Google Scholar
Leibniz, G. W. 2001. The Labyrinth of the Continuum. ed. and trans. Arthur, R. T. W.. New Haven, CT: Yale University Press.Google Scholar
Mariotte, E. 1740. “Traité de la percussion ou Choc des Corps” (1679). In Oeuvres de M. Mariotte, vol. 1. The Hague.Google Scholar
Mormino, G. 1993. Penetralia Motus: La fondazione relativistica della meccanica in C. Huygens, con l’edizione del Codex Hugeniorum 7A. Florence: Nuova Italia.Google Scholar
Newton, I. 1684–85. De motu corporum in mediis regulariter cedentibus. MS Add. 3965.5, Cambridge University Library. The Newton Project. http://www.newtonproject.sussex.ac.uk/view/texts/normalized/NATP00091.Google Scholar
Newton, I. 1687. Philosophiae naturalis principia mathematica. London.CrossRefGoogle Scholar
Riccioli, G. B. 1651. Almagestum novum. Vol. 1, pt. 2. Bologna.Google Scholar
Rynasiewicz, R. 2000. “On the Distinction between Absolute and Relative Motion.” Philosophy of Science 67:7093.CrossRefGoogle Scholar
Schliesser, E., and Smith, G. E.. Forthcoming. “Huygens’s 1688 Report to the Directors of the Dutch East India Company on the Measurement of Longitude at Sea and the Evidence It Offered against Universal Gravity.” Archive for History of Exact Sciences.Google Scholar
Stan, M. 2015. “Absolute Space and the Riddle of Rotation: Kant’s Response to Newton.” Oxford Studies in Early Modern Philosophy, Vol. 7, ed. Daniel Garber and Donald Rutherford, 257–308. Oxford: Oxford University Press.Google Scholar
Stein, H. 1977. “Some Philosophical Prehistory of General Relativity.” In Foundations of Space-Time Theories, ed. Earman, John, Glymour, Clark N., and Stachel, John J., 349. Minnesota Studies in the Philosophy of Science 8. Minneapolis: University of Minnesota Press.Google Scholar
Vilain, C. 1996. La mécanique de Christian Huygens. Paris: Blanchard.Google Scholar
Wren, C. 1668. “Lex naturae de collisione corporum.” Philosophical Transactions 4:867–68.Google Scholar