Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-01T06:17:44.043Z Has data issue: false hasContentIssue false

The ribosomes of Plasmodium berghei: isolation and ribosomal ribonucleic acid analysis

Published online by Cambridge University Press:  06 April 2009

F. W. Miller
Affiliation:
Department of Anatomy and Developmental Biology Center, Case Western Reserve University, Cleveland, Ohio 44106
Judith Ilan*
Affiliation:
Department of Anatomy and Developmental Biology Center, Case Western Reserve University, Cleveland, Ohio 44106
*
Dr Judith Ilan, Department of Anatomy, School of Medicine, Case Western Reserve University, Cleveland, Oh 44106

Summary

Ribosomes and high molecular weight ribosomal ribonucleic acid (rRNA) from the blood stages of Plasmodium berghei parasites were studied in preparations free from host ribosome contamination. Purified malarial ribosomes were isolated in high yield from a population of ultrastructurally intact, viable parasites by hypertonic lysis with Triton X-100 and differential centrifugation. These ribosomes were shown to be derived from active polysomes and could be dissociated into subunits by puromycin–0·5 m KCl treatment. Malarial rRNA extracted from purified 40S and 60S ribosomal subunits was characterized by electrophoretic, sedimentation and base ratio analyses. Like certain other protozoa, the P. berghei 40S ribosomal subunit possessed an exceptionally large RNA species (mol. wt 0·9 × 106), while RNA isolated from the parasite's 60S subunit (mol. wt 1·5 × 106) was specifically ‘nicked’ to produce one large component (mol.wt 1·2 × 106) and one small component (mol.wt 0·3 × 106) in equimolar quantities. These rRNA's migrate identically on polyacrylamide gels after heating to 63°C for 5 mm or under denaturing conditions in the presence of formamide, indicating an absence of aggregation and non-specific degradation of the rRNA species. Base composition studies showed P. berghei rRNA to be low in guanosine and cytosine content, as is the case for protozoa generally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. & Cook, R. T. (1971). Ribosomes of the malarial parasite, Plasmodium knowlesi. II. Ultrastructural features. Comparative Biochemistry and Physiology 39B, 913–17.Google Scholar
Bast, R. E., Garfield, S. A., Gehrke, L. & Ilan, J. (1977). Coordination of ribosome content and polysome formation during estradiol stimulation of vitellogenin synthesis in. immature male chick livers. Proceedings of the National Academy of Sciences, USA 74, 3133–7.CrossRefGoogle ScholarPubMed
Blobel, G. & Sabatini, D. (1971). Dissociation of mammalian polyribosomes into subunits by puromycin. Proceedings of the National Aaademy of Sciences, USA 68, 390–4.Google Scholar
Borda, L., Green, M. H. & Kamen, M. D. (1969). Sedimentation properties of ribonucleic acid from Rhodopseudomonas spheroides. Journal of General Microbiology 56, 345–51.CrossRefGoogle ScholarPubMed
Bostock, C. J., Prescott, D. M. & Lauth, M. (1971). Lability of 26S ribosomal RNA in Tetrahymena pyriformis. Experimental Cell Research 66, 260–2.CrossRefGoogle Scholar
Brown, F. & Martin, S. J. (1965). Base composition of ribosomal ribonucleic acid fractions from five mammalian tissue-culture strains. Biochemical Journal 97, 20–2c.Google Scholar
Brown, R. D. & Haselkorn, R. (1971). Synthesis and maturation of cytoplasmic RNA in Euglena gracilis. Journal of Molecular Biology 59, 491503.CrossRefGoogle ScholarPubMed
Bynum, J. W. & Ronzio, R. A. (1976). An improved method for the rapid isolation of RNA from tissue with high ribonuclease content. Analytical Biochemistry 73, 209–14.Google Scholar
Caston, J. D. & Jones, P. H. (1972). Synthesis and processing of high molecular weight RNA by nuclei isolated from embryos of Rana pipiens. Journal of Molecular Biology 69, 1938.CrossRefGoogle ScholarPubMed
Cook, R. T., Aikawa, M., Rock, R. C., Little, W. & Sprinz, H. (1969). The isolation and fractionation of Plasmodium knowlesi. Military Medicine 134 (Suppl.), 866–83.Google Scholar
Cook, R. T., Rock, R. C., Aikawa, M. & Fournier, M. J. Jr (1971). Ribosomes of the malarial parasite, Plasmodium knowlesi. I. Isolation, activity and sedimentation velocity. Comparative Biochemistry and Physiology 39B, 897911.Google ScholarPubMed
Cox, R. T., Godwin, E. & Hastings, J. R. B. (1976). Spectroscopic evidence for the uneven distribution of adenine and uracil residues in ribosomal ribonucleic acid of Drosophila melanogaster and of Plasmodium knowlesi and its possible evolutionary significance. Biochemical Journal 155, 465–75.CrossRefGoogle ScholarPubMed
Dowben, R. M., Gaffey, T. A. & Lynch, P. M. (1968). Isolation of liver and muscle polyribosomes in high yield after cell disruption by nitrogen cavitation. Federation of European Biochemical Societies Letters 2, 13.CrossRefGoogle ScholarPubMed
Fulton, J. D. & Grant, P. T. (1956). The sulphur requirements of the erythrocytic form of Plasmodium knowlesi. Biochemical Journal 63, 274–82.CrossRefGoogle Scholar
Hawkins, S. E. & Hughes, J. M. (1973). The size of ribosomal subunit RNA in Amoeba discoides. Nature, New Biology 246, 199200.CrossRefGoogle ScholarPubMed
Heinzmann, P. (1970). Propriétés des ribosomes et des RNA ribosomiques d'Euglena gracilis. Biochimica et Biophysica Acta 224, 144–54.CrossRefGoogle Scholar
Higo, S., Higo, M. & Tanifuji, S. (1971). Specific dissociation of pea 25-S rRNA by hotphenol treatment. Biochimica et Biophysica Acta 246, 499506.Google Scholar
Hoffman, W. L. & Ilan, J. (1974). Purification on hydroxyapatite of liver ribosomes and polysomes from unfasted mice. Biochimica et Biophysica Acta 366, 199214.CrossRefGoogle ScholarPubMed
Homewood, C. A. & Neame, K. D. (1976). A comparison of methods used for the removal of white cells from malaria-infected blood. Annals of Tropical Medicine and Parasitology 70, 249–51.CrossRefGoogle ScholarPubMed
Ilan, J., Pierce, D. R. & Miller, F. W. (1977). Influence of 9-β-D-arabino-furanosyladenine on total protein synthesis and on differential gene expression of unique proteins in the rodent malarial parasite Plasmodium berghei. Proceeding of the National Academy of Sciences, USA 74, 3386–90.Google Scholar
Ingle, J. (1968). Synthesis and stability of chloroplast ribosomal RNA's. Plant Physiology 43, 1448–54.CrossRefGoogle ScholarPubMed
Ishikawa, H. (1975). Comparative studies on the thermal stability of animal ribosomal RNA's. III. Sponge (Porifera) and other species (Tetrahymena and Lachnus). Comparative Biochemistry and Physiology 51B, 81–5.Google ScholarPubMed
Ishikawa, H. (1976). Arthropod ribosomes. Integrity of ribosomal ribonucleic acids from aphids and water fleas. Biochimica et Biophysica Acta 435, 258–68.CrossRefGoogle ScholarPubMed
Ishikawa, H. (1977). Evolution of ribosomal RNA. Comparative Biochemistry and Physiology 58B, 17.Google Scholar
Jordan, B. R., Jourdan, R. & Jacq, B. (1976). Late steps in the maturation of Drosophila 26S ribosomal RNA: generation of 5·8S and 2S RNA's by cleavages occurring in the cytoplasm. Journal of Molecular Biology 101, 85105.CrossRefGoogle Scholar
Lava-Sanchez, P. A., Amaldi, F. & LaPosta, A. (1972). Base composition of ribosomal RNA and evolution. Journal of Molecular Evolution 2, 4455.CrossRefGoogle ScholarPubMed
Lava-Sanchez, P. A. & Puppo, S. (1975). Occurrence in vivo of ‘Hidden Breaks’ at specific sites of 265 ribosomal RNA of Musca carnaria. Journal of Molecular Biology 95, 920.CrossRefGoogle Scholar
Leaver, C. J. (1973). Molecular integrity of chloroplast ribosomal ribonucleic acid. Biochemical Journal 135, 237–40.Google Scholar
Leaver, C. J. & Ingle, J. (1971). The molecular integrity of chloroplast ribosomal ribonucleic acid. Biochemical Journal 123, 235–43.Google Scholar
Lessie, T. S. (1965). The atypical ribosomal RNA complement of Rhodopseudomonas spheroides. Journal of General Microbiology 3, 311–20.CrossRefGoogle Scholar
Loening, U. E. (1968). Molecular weights of ribosomal RNA in relation to evolution. Journal of Molecular Biology 38, 355–65.CrossRefGoogle ScholarPubMed
Loening, U. E. (1969). The determination of the molecular weight of ribonucleic acid by polyacrylamide-gel electrophoresis. The effects of changes in conformation. Biochemical Journal 113, 131–8.CrossRefGoogle ScholarPubMed
Mans, R. J. & Novelli, G. D. (1961). Measurements of the incorporation of radioactive amino acids into protein by a filter-paper disk method. Archives of Biochemistry and Biophysics 94, 4853.CrossRefGoogle Scholar
Martin, T. E. (1973). A simple general method to determine the proportion of active ribosomes in eukaryotic cells. Experimental Cell Research 80, 496–8.Google Scholar
Noll, H. & Stutz, E. (1968). The use of sodium and lithium dodecyl sulfate in nucleic acid isolation. Methods of Enzymology 12B, 129–55.CrossRefGoogle Scholar
Palmiter, R. D. (1974). Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochemistry 13, 3606–15.CrossRefGoogle Scholar
Pinder, J. C., Staynov, D. Z. & Gratzer, W. B. (1974). Electrophoresis of RNA in formamide. Biochemistry 13, 5373–8.Google Scholar
Randerath, E. & Randerath, K. (1967). Ion-exchange thin-layer chromatography. XVI. Techniques for preparation and analysis of oligonucleotides. Journal of Chromatography 31, 485–99.Google Scholar
Randerath, K. (1964). Separation of the constituent nucleotides of nucleic acids on ion- exchange thin-layers. Experientia 20, 406–7.CrossRefGoogle ScholarPubMed
Randerath, K. & Randerath, E. (1966). Ion-exchange thin-layer chromatography. XV. Preparation, properties, and applications of paper-like PEI-cellulose sheets. Journal of Chromatography 22, 110–17.CrossRefGoogle Scholar
Rawson, J. R., Crouse, E. J. & Stutz, E. (1971). The integrity of the 25-S ribosomal RNA from Euglena gracilis 87-S ribosomes. Biochimica et Biophysica Acta 246, 507–16.CrossRefGoogle ScholarPubMed
Reijnders, L., Sloof, P., Sival, J. & Borst, P. (1973). Gel electrophoresis of RNA under denaturing conditions. Biochimica et Biophysica Acta 324, 320–33.CrossRefGoogle ScholarPubMed
Rubinstein, L. & Clever, U. (1971). Non-conservative processing of ribosomal RNA in an insect, Chironomus tentans. Biochimica et Biophysica Acta 246, 517–29.CrossRefGoogle Scholar
Serfling, V. E. (1976). Studies on the lability of Dipteran 28S ribosomal RNA: the formation of the breakpoint is a cytoplasmic event. Biologisches Zentralblatt 95, 713–23.Google Scholar
Sherman, I. W. (1976). The ribosomes of the simian malaria Plasmodium knowlesi. II. A cell-free protein synthesizing system. Comparative Biochemistry and Physiology 53B, 447–50.Google Scholar
Sherman, I. W., Cox, R. A., Higginson, B., McLaren, D. J. & Williamson, J. (1975). The ribosomes of the simian malaria, Plasmodium knowlesi. I. Isolation and characterization. Journal of Protozoology 22, 568–72.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Jones, L. A. (1976). Protein synthesis by a cell-free preparation from the bird malaria, Plasmodium lophurae. Journal of Protozoology 23, 277–81.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Jones, L. A. (1977). The Plasmodium lophurae (avian malaria) ribosome. Journal of Protozoology 24, 331–4.Google Scholar
Spencer, R. & Cross, G. A. M. (1976). Lability of RNA from the large cytoplasmic ribosomal subunit of the protozoan Crithidia oncopelti. Journal of General Microbiology 93, 82–8.CrossRefGoogle Scholar
Spohr, G., Mirault, M. E., Imaizumi, T. & Scherrer, K. (1976). Molecular-weight determination of animal-cell RNA by electrophoresis in formamide under fully denaturing conditions on exponential polyacrylamide gels. European Journal of Biochemistry 62, 313–22.Google Scholar
Stanley, W. M. & Bock, P. M. (1965). Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry 4, 1302–11.CrossRefGoogle ScholarPubMed
Stevens, A. H. & Pachler, P. F. (1972). Discontinuity of 26S rRNA in Acanthamoeba castellani. Journal of Molecular Biology 66, 225–37.CrossRefGoogle Scholar
Szalay, A., Munsche, D., Wollgiehn, H. & Parthier, B. (1973). Characterization and synthesis of Anacystis ribonucleic acids. Biochemie und Physiologie der Pflanzen 164, 113.CrossRefGoogle Scholar
Tanowitz, H., Wittner, M., Svede, M. & Soeiro, R. (1975). Studies on ribosomal RNA of Trypanosoma cruzi. Journal of Parasitology 61, 1065–9.CrossRefGoogle ScholarPubMed
Tokuyasu, K., Ilan, J. & Ilan, J. (1969). Biogenesis of ribosomes in Plasmodium berghei. Military Medicine 134 (Suppl.), 1032–8.Google Scholar
Trager, W., Langreth, S. G. & Platzer, E. G. (1972). Viability and fine structure of extra-cellular Plasmodium lophurae prepared by different methods. Proceedings of the Helminthological Society of Washington 39, 220–30.Google Scholar
Trigg, P. I., Shakespeare, P. G., Burt, S. J. & Kyd, S. I. (1975). Ribonucleic acid synthesis in Plasmodium knowlesi maintained both in vivo and in vitro. Parasitology 71, 199209.CrossRefGoogle ScholarPubMed
Udem, S. A. & Warner, J. R. (1972). Ribosomal RNA synthesis in Saccharomyces cerevisiae. Journal of Molecular Biology 65, 227–42.CrossRefGoogle ScholarPubMed
Warhurst, D. C. & Williamson, J. (1970). Ribonucleic acid from Plasmodium knowlesi before and after chloroquine treatment. Chemical-Biological Interactions 2, 89106.CrossRefGoogle ScholarPubMed
Weinberg, R. A. & Penman, S. (1970). Processing of 45S nucleolar RNA. Journal of Molecular Biology 47, 169–78.CrossRefGoogle Scholar
Wellde, B. T., Briggs, N. T. & Sadun, E. H. (1966). Susceptibility to Plasmodium berghei: parasitological, biochemical and hematological studies in laboratory and wild mammals. Military Medicine 131 (Suppl.), 859–69.CrossRefGoogle ScholarPubMed