Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T06:58:43.775Z Has data issue: false hasContentIssue false

Purification of Trypanosoma brucei variable surface glycoproteins: analysis of degradation occurring during isolation

Published online by Cambridge University Press:  06 April 2009

A. F. Barbet
Affiliation:
Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
T. C. McGuire
Affiliation:
Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164

Extract

Trypanosoma brucei variable surface glycoproteins (VSGs), isolated from some antigenic types of trypanosomes, degraded during isolation. We show that this degradation occurred immediately after breakage of the organism, presumably because of liberation of internal enzymes, and resulted in heterogeneity of isolated VSGs with respect to charge and/or molecular weight. Degradation and consequent heterogeneity of these VSGs could be abolished by releasing VSG from the trypanosome surface without breakage of the organism. The method was a modification of an incubation and shaking procedure initially described for Trypanosoma congolense (Reinwald, Rautenberg & Risse, 1979). WaTat 1.11 VSG released by this method and isolated, had a molecular weight (mol. wt) of 63000 and bound to a heterologous anti-VSG serum. VSG isolated from the same trypanosomes following breakage of organisms was of lower molecular weight. One such WaTat 1.11 VSG fragment of 42000 mol. wt, did not bind to the heterologous anti-VSG serum and therefore lacked cross-reacting antigenic determinants present in the 63000 mol. wt VSG

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbet, A. F. & McGuibe, T. C. (1978). Cross-reacting determinants in variant-specific surface antigens of African trypanosomes. Proceedings ofthe National Academy of Sciences 75, 1989–93.CrossRefGoogle Scholar
Barbet, A. F., Musoke, A. J., Shapiro, S. Z., Mpimbaza, G. & McGuire, T. C. (1981). Identification of the fragment containing cross-reacting antigenic determinants in the variable surface glycoprotein of Trypanosoma brucei. Parasitology 83, 623–37.CrossRefGoogle Scholar
Baumann, G. & Chrambach, A. (1975). Quantitative removal of carrier ampholytes from protein fractions derived from isoelectric focusing. Analytical Biochemistry 69, 649–51.CrossRefGoogle ScholarPubMed
Bootheoyd, J. C., Cross, G. A. M., Hoeijmakers, J. H. J. & Borst, P. (1980). A variant glycoprotein of Trypanosoma brucei synthesised with a C-terminal hydrophobic ‘tail’ absent from purified glycoprotein. Nature, London 288, 624–6.CrossRefGoogle Scholar
Cross, G. A. M. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1979). Crossreacting determinants in the C-terminal region of trypanosome variant surface antigens. Nature, London 277, 310–12.CrossRefGoogle ScholarPubMed
Holder, A. A. & Cross, G. A. M. (1981). Glycopeptides from variant surface glycoproteins of Trypanosoma brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Molecular and Biochemical Parasitology 2, 135–50.CrossRefGoogle ScholarPubMed
Lanham, S. M. (1968). Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature, London 218, 1273–4.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE—cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Lyon, J. A., Pratt, J. M., Travis, R. W., Doctor, B. P. & Olenick, J. G. (1981). Use of monoclonal antibody to immunochemically characterise variant specific surface coat glycoprotein from Trypanosoma rhodesiense. Journal of Immunology 126, 134–7.CrossRefGoogle ScholarPubMed
Matthyssens, G., Michiels, F., Hamers, R., Pays, E. & Steinert, M. (1981). Two variant surface glycoproteins of Trypanosoma brucei have a conserved C-terminus. Nature, London 293, 230–3.CrossRefGoogle ScholarPubMed
McGuire, T. C., Barbet, A. F., Hirtjmi, H., Meshnick, S. & Doyle, J. J. (1980). Trypanosoma brucei: radioimmunoassay of variant surface glycoproteins from organisms grown in vitro and in vivo. Experimental Parasitology 50, 233–9.CrossRefGoogle ScholarPubMed
Olenick, J. G., Travis, R. W. & Garson, S. (1979). Chemical and immunological characterisation of surface coat glycoprotein antigens isolated from variants of Trypanosoma rhodesiense. Proceedings of the American Society of Parasitologists, Abstract 129, p. 53.Google Scholar
Pearson, T. W., Kar, S. K., McGtjire, T. C. & Lundin, L. B. (1981). Trypanosome variable surface antigens: studies using two-dimensional gel electrophoresis and monoclonal antibodies. Journal of Immunology 126, 823–8.CrossRefGoogle ScholarPubMed
Reinwald, E., Rautenberg, P. & Risse, H.-J. (1979). Trypanosoma congolense: mechanical removal of the surface coat in vitro. Experimental Parasitology 48, 384–97.CrossRefGoogle ScholarPubMed
Rovis, L., Barbet, A. F. & Williams, R. O. (1978). Characterisation of the surface coat of Trypanosoma congolense. Nature, London 271, 654–6.CrossRefGoogle ScholarPubMed
Takács, B. (1979). Electrophoresis of proteins in polyacrylamide slab gels. In Immunological Methods (ed. I., Lefkovits and B., Pernis), pp. 81105. New York and London: Academic Press.CrossRefGoogle Scholar
Vervoort, T., Barbet, A. F., Musoke, A. J., Magnus, E., Mpimbaza, G. & Van Meirvenne, N. (1981). Isotypic surface glycoproteins of trypanosomes. Immunology 44, 223–32.Google ScholarPubMed
Vickerman, K. (1974). Antigenic variation in African trypanosomes. In Parasites in the Immunised Host: Mechanisms of Survival. Ciba Fdn Symp. 25, pp. 5380. New York: Associated Scientific Publishers.Google Scholar