Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T02:54:17.109Z Has data issue: false hasContentIssue false

A novel duplex ddPCR assay for the diagnosis of schistosomiasis japonica: proof of concept in an experimental mouse model

Published online by Cambridge University Press:  09 March 2017

KOSALA G. WEERAKOON*
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia School of Public Health, University of Queensland, Brisbane, Australia Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
CATHERINE A. GORDON
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
PENGFEI CAI
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
GEOFFREY N. GOBERT
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
MARY DUKE
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
GAIL M. WILLIAMS
Affiliation:
School of Public Health, University of Queensland, Brisbane, Australia
DONALD P. MCMANUS
Affiliation:
Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
*
*Corresponding author: Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia. E-mail: [email protected]

Summary

The current World Health Organization strategic plan targets the elimination of schistosomiasis as a public health problem by 2025 and accurate diagnostics will play a pivotal role in achieving this goal. DNA-based detection methods provide a viable alternative to some of the commonly used tests, notably microscopy and serology, for the diagnosis of schistosomiasis. The detection of parasite cell-free DNA in different clinical samples is a recent valuable advance, which provides significant benefits for accurate disease diagnosis. Here we validated a novel duplex droplet digital PCR assay for the diagnosis of Chinese (SjC) and Philippine (SjP) strains of Schistosoma japonicum infection in a mouse model. The assay proved applicable for both SjC and SjP infections and capable of detecting infection at a very early intra-mammalian stage in conveniently obtainable samples (urine and saliva) as well as in serum and feces. The target DNA copy numbers obtained in the assay showed a positive correlation with the infection burden assessed by direct traditional parasitology. The potential to detect parasite DNA in urine and saliva has important practical implications for large-scale epidemiological screening programmes in the future, particularly in terms of logistical convenience, and the assay has the potential to be a valuable additional tool for the diagnosis of schistosomiasis japonica.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Queen's University Belfast, School of Biological Sciences, Belfast, UK.

References

REFERENCES

Arrieta, M. C., Bistritz, L. and Meddings, J. B. (2006). Alterations in intestinal permeability. Gut 55, 15121520.Google Scholar
Basch, P. F. (1981). Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. Journal of Parasitology 67, 179185.Google Scholar
Bergquist, R. and Tanner, M. (2010). Controlling schistosomiasis in Southeast Asia: a tale of two countries. Advances in Parasitology 72, 109144.CrossRefGoogle ScholarPubMed
Boissier, J., Moné, H., Mitta, G., Bargues, M. D., Molyneux, D. and Mas-Coma, S. (2015). Schistosomiasis reaches Europe. The Lancet Infectious Diseases 15, 757758.Google Scholar
Coates, B. S., Fraser, L. M., French, B. W. and Sappington, T. W. (2013). Proliferation and copy number variation of BEL-like long terminal repeat retrotransposons within the Diabrotica virgifera virgifera genome. Gene 534, 362370.Google Scholar
Corstjens, P. L., De Dood, C. J., Kornelis, D., Fat, E. M., Wilson, R. A., Kariuki, T. M., Nyakundi, R. K., Loverde, P. T., Abrams, W. R., Tanke, H. J., Van Lieshout, L., Deelder, A. M. and Van Dam, G. J. (2014). Tools for diagnosis, monitoring and screening of Schistosoma infections utilizing lateral-flow based assays and upconverting phosphor labels. Parasitology 141, 18411855.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (2012). Retrotransposons. Current Biology 22, R432R437.Google Scholar
Gautret, P., Mockenhaupt, F. P., Bottieau, E., Parola, P. and Schlagenhauf, P. (2015). Schistosomiasis in Corsica and the pivotal role of travellers. The Lancet Infectious Diseases 15, 13781379.CrossRefGoogle ScholarPubMed
Gobert, G. N., You, H., Jones, M. K., McInnes, R. and McManus, D. P. (2013). Differences in genomic architecture between two distinct geographical strains of the blood fluke Schistosoma japonicum reveal potential phenotype basis. Molecular and Cellular Probes 27, 1927.Google Scholar
Gordon, C. A., Gray, D. J., Gobert, G. N. and McManus, D. P. (2011). DNA amplification approaches for the diagnosis of key parasitic helminth infections of humans. Molecular and Cellular Probes 25, 143152.Google Scholar
Gordon, C. A., Acosta, L. P., Gray, D. J., Olveda, R. M., Jarilla, B., Gobert, G. N., Ross, A. G. and McManus, D. P. (2012). High prevalence of Schistosoma japonicum infection in carabao from Samar Province, the Philippines: implications for transmission and control. PLoS Neglected Tropical Diseases 6, e1778.CrossRefGoogle ScholarPubMed
Gordon, C. A., Acosta, L. P., Gobert, G. N., Olveda, R. M., Ross, A. G., Williams, G. M., Gray, D. J., Harn, D., Li, Y. and McManus, D. P. (2015 a). Real-time PCR demonstrates high prevalence of Schistosoma japonicum in the Philippines: implications for surveillance and control. PLoS Neglected Tropical Diseases 9, e0003483.Google Scholar
Gordon, C. A., McManus, D. P., Acosta, L. P., Olveda, R. M., Williams, G. M., Ross, A. G., Gray, D. J. and Gobert, G. N. (2015 b). Multiplex real-time PCR monitoring of intestinal helminths in humans reveals widespread polyparasitism in Northern Samar, the Philippines. International Journal for Parasitology 45, 477483.Google Scholar
Gordon, C. A., McManus, D. P., Jones, M. K., Gray, D. J. and Gobert, G. N. (2016). The increase of exotic zoonotic helminth infections: the impact of urbanization, climate change and globalization. Advances in Parasitology 91, 311397.CrossRefGoogle ScholarPubMed
Guo, J. J., Zheng, H. J., Xu, J., Zhu, X. Q., Wang, S. Y. and Xia, C. M. (2012). Sensitive and specific target sequences selected from retrotransposons of Schistosoma japonicum for the diagnosis of schistosomiasis. PLoS Neglected Tropical Diseases 6, e1579.Google Scholar
Hall Sedlak, R. and Jerome, K. R. (2014). The potential advantages of digital PCR for clinical virology diagnostics. Expert Review of Molecular Diagnostics 14, 501507.Google Scholar
Han, J. S. (2010). Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mobile DNA 1, 15.Google Scholar
Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S., Stumbo, D. P., Hodges, S. P., et al. (2011). High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry 83, 86048610.CrossRefGoogle ScholarPubMed
Hope, M., Duke, M. and McManus, D. P. (1996). A biological and immunological comparison of Chinese and Philippine Schistosoma japonicum . International Journal for Parasitology 26, 325332.CrossRefGoogle ScholarPubMed
Hudecova, I. (2015). Digital PCR analysis of circulating nucleic acids. Clinical Biochemistry 48, 948956.CrossRefGoogle ScholarPubMed
Huggett, J. F., Cowen, S. and Foy, C. A. (2015). Considerations for digital PCR as an accurate molecular diagnostic tool. Clinical Chemistry 61, 7988.Google Scholar
Kato-Hayashi, N., Yasuda, M., Yuasa, J., Isaka, S., Haruki, K., Ohmae, H., Osada, Y., Kanazawa, T. and Chigusa, Y. (2013). Use of cell-free circulating schistosome DNA in serum, urine, semen, and saliva to monitor a case of refractory imported schistosomiasis hematobia. Journal of Clinical Microbiology 51, 34353438.Google Scholar
Kato-Hayashi, N., Leonardo, L. R., Arevalo, N. L., Tagum, M. N. B., Apin, J., Agsolid, L. M., Chua, J. C., Villacorte, E. A., Kirinoki, M., Kikuchi, M., Ohmae, H., Haruki, K. and Chigusa, Y. (2015). Detection of active schistosome infection by cell-free circulating DNA of Schistosoma japonicum in highly endemic areas in Sorsogon Province, the Philippines. Acta Tropica 141, 178183.CrossRefGoogle ScholarPubMed
Kongs, A., Marks, G., Verlé, P. and Van der Stuyft, P. (2001). The unreliability of the Kato-Katz technique limits its usefulness for evaluating S. mansoni infections. Tropical Medicine and International Health 6, 163169.CrossRefGoogle ScholarPubMed
Laha, T., Brindley, P. J., Smout, M. J., Verity, C. K., McManus, D. P. and Loukas, A. (2002). Reverse transcriptase activity and untranslated region sharing of a new RTE-like, non-long terminal repeat retrotransposon from the human blood fluke, Schistosoma japonicum . International Journal for Parasitology 32, 11631174.Google Scholar
Legesse, M. and Erko, B. (2007). Field-based evaluation of a reagent strip test for diagnosis of Schistosoma mansoni by detecting circulating cathodic antigen in urine before and after chemotherapy. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 668673.Google Scholar
Lier, T., Simonsen, G. S., Haaheim, H., Hjelmevoll, S. O., Vennervald, B. J. and Johansen, M. V. (2006). Novel real-time PCRfor detection of Schistosoma japonicum in stool. The Southeast Asian Journal of Tropical Medicine and Public Health 37, 257264.Google Scholar
Llewellyn, S., Inpankaew, T., Nery, S. V., Gray, D. J., Verweij, J. J., Clements, A. C. A., Gomes, S. J., Traub, R. and McCarthy, J. S. (2016). Application of a multiplex quantitative PCR to assess prevalence and intensity of intestinal parasite infections in a controlled clinical trial. PLoS Neglected Tropical Diseases 10, e0004380.Google Scholar
Milligan, J. N. and Jolly, E. R. (2011). Cercarial transformation and in vitro cultivation of Schistosoma mansoni schistosomules. Journal of Visualized Experiments 54, e3191.Google Scholar
Miotke, L., Lau, B. T., Rumma, R. T. and Ji, H. P. (2014). High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Analytical Chemistry 86, 26182624.Google Scholar
Moertel, L., McManus, D. P., Piva, T. J., Young, L., McInnes, R. L. and Gobert, G. N. (2006). Oligonucleotide microarray analysis of strain- and gender-associated gene expression in the human blood fluke, Schistosoma japonicum . Molecular and Cellular Probes 20, 280289.CrossRefGoogle ScholarPubMed
Mulvenna, J., Moertel, L., Jones, M. K., Nawaratna, S., Lovas, E. M., Gobert, G. N., Colgrave, M., Jones, A., Loukas, A. and McManus, D. P. (2010). Exposed proteins of the Schistosoma japonicum tegument. International Journal for Parasitology 40, 543554.CrossRefGoogle ScholarPubMed
Murray, C. J. L., Barber, R. M., Foreman, K. J., Abbasoglu Ozgoren, A., Abd-Allah, F., Abera, S. F., Aboyans, V., Abraham, J. P., Abubakar, I., Abu-Raddad, L. J., Abu-Rmeileh, N. M., Achoki, T., Ackerman, I. N., Ademi, Z., Adou, A. K., Adsuar, J. C., Afshin, A., Agardh, E. E., Alam, S. S., Alasfoor, D., Albittar, M. I., Alegretti, M. A., Alemu, Z. A., Alfonso-Cristancho, R., Alhabib, S., Ali, R., Alla, F., Allebeck, P., Almazroa, M. A., Alsharif, U., et al. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet (London, England) 386, 21452191.Google Scholar
Oliveira, L. M. A., Santos, H. L. C., Gonçalves, M. M. L., Barreto, M. G. M. and Peralta, J. M. (2010). Evaluation of polymerase chain reaction as an additional tool for the diagnosis of low-intensity Schistosoma mansoni infection. Diagnostic Microbiology and Infectious Disease 68, 416421.Google Scholar
Ross, A. G. P., Bartley, P. B., Sleigh, A. C., Olds, G. R., Li, Y., Williams, G. M. and McManus, D. P. (2002). Schistosomiasis. The New England Journal of Medicine 346, 12121220.Google Scholar
Ross, A. G., Vickers, D., Olds, G. R., Shah, S. M. and McManus, D. P. (2007). Katayama syndrome. The Lancet Infectious Diseases 7, 218224.CrossRefGoogle ScholarPubMed
Ross, A. G. P., Olds, G. R., Cripps, A. W., Farrar, J. J. and McManus, D. P. (2013). Enteropathogens and chronic illness in returning travelers. The New England Journal of Medicine 368, 18171825.Google Scholar
Sandoval, N., Siles-Lucas, M., Lopez Aban, J., Pérez-Arellano, J. L., Gárate, T. and Muro, A. (2006). Schistosoma mansoni: a diagnostic approach to detect acute schistosomiasis infection in a murine model by PCR. Experimental Parasitology 114, 8488.Google Scholar
Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009). The Schistosoma japonicum genome reveals features of host–parasite interplay. Nature 460, 345351.Google Scholar
Schorey, J. S., Cheng, Y., Singh, P. P. and Smith, V. L. (2015). Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Reports 16, 2443.CrossRefGoogle ScholarPubMed
Spear, R. C., Seto, E. Y. W., Carlton, E. J., Liang, S., Remais, J. V., Zhong, B. and Qiu, D. (2011). The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China. International Journal for Parasitology 41, 12431247.Google Scholar
Stothard, J. R., Kabatereine, N. B., Tukahebwa, E. M., Kazibwe, F., Rollinson, D., Mathieson, W., Webster, J. P. and Fenwick, A. (2006). Use of circulating cathodic antigen (CCA) dipsticks for detection of intestinal and urinary schistosomiasis. Acta Tropica 97, 219228.Google Scholar
Sze, M. A., Abbasi, M., Hogg, J. C. and Sin, D. D. (2014). A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD GOLD 2. PLoS ONE 9, e110351.Google Scholar
Twu, O. and Johnson, P. J. (2014). Parasite extracellular vesicles: mediators of intercellular communication. PLoS Pathogens 10, e1004289.Google Scholar
Utzinger, J., Zhou, X. N., Chen, M. G. and Bergquist, R. (2005). Conquering schistosomiasis in China: the long march. Acta Tropica 96, 6996.Google Scholar
Utzinger, J., Becker, S. L., van Lieshou, L., van Dam, G. J. and Knopp, S. (2015). New diagnostic tools in schistosomiasis. Clinical Microbiology and Infection 21, 529542.Google Scholar
van Dam, G. J., Xu, J., Bergquist, R., de Dood, C. J., Utzinger, J., Qin, Z.-Q., Guan, W., Feng, T., Yu, X.-L., Zhou, J., Zheng, M., Zhou, X.-N. and Corstjens, P. L. A. M. (2015). An ultra-sensitive assay targeting the circulating anodic antigen for the diagnosis of Schistosoma japonicum in a low-endemic area, People's Republic of China. Acta Tropica 141, 190197.CrossRefGoogle Scholar
Weerakoon, K. G. and McManus, D. P. (2016). Cell-free DNA as a diagnostic tool for human parasitic infections. Trends in Parasitology 32, 378391.CrossRefGoogle ScholarPubMed
Weerakoon, K. G. A. D., Gobert, G. N., Cai, P. and McManus, D. P. (2015). Advances in the diagnosis of human schistosomiasis. Clinical Microbiology Reviews 28, 939967.Google Scholar
Weerakoon, K. G., Gordon, C. A., Gobert, G. N., Cai, P. and McManus, D. P. (2016). Optimisation of a droplet digital PCR assay for the diagnosis of Schistosoma japonicum infection: a duplex approach with DNA binding dye chemistry. Journal of Microbiological Methods 125, 1927.Google Scholar
WHO (2008). The Global Burden of Disease: 2004 Update. WHO Press, World Health Organization, Geneva, Switzerland.Google Scholar
WHO (2010). Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases. WHO Press, World Health Organization, Geneva, Switzerland.Google Scholar
WHO (2013). Schistosomiasis: Progress Report 2001–2011 and Strategic Plan 2012–2020. WHO Press, World Health Organization, Geneva, Switzerland.Google Scholar
Wichmann, D., Panning, M., Quack, T., Kramme, S., Burchard, G.-D., Grevelding, C. and Drosten, C. (2009). Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Neglected Tropical Diseases 3, e422.Google Scholar
Xia, C. M., Rong, R., Lu, Z. X., Shi, C. J., Xu, J., Zhang, H. Q., Gong, W. and Luo, W. (2009). Schistosoma japonicum: a PCR assay for the early detection and evaluation of treatment in a rabbit model. Experimental Parasitology 121, 175179.Google Scholar
Xu, J., Rong, R., Zhang, H. Q., Shi, C. J., Zhu, X. Q. and Xia, C. M. (2010). Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). International Journal for Parasitology 40, 327331.Google Scholar
Xu, J., Liu, A., Guo, J., Wang, B., Qiu, S. J., Sun, H., Guan, W., Zhu, X. Q., Xia, C. M. and Wu, Z.-D. (2013). The sources and metabolic dynamics of Schistosoma japonicum DNA in serum of the host. Parasitology Research 112, 129133.Google Scholar
Yang, R., Paparini, A., Monis, P. and Ryan, U. (2014). Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. International Journal for Parasitology 44, 11051113.Google Scholar
You, H., Zhang, W., Jones, M. K., Gobert, G. N., Mulvenna, J., Rees, G., Spanevello, M., Blair, D., Duke, M., Brehm, K. and McManus, D. P. (2010). Cloning and characterisation of Schistosoma japonicum insulin receptors. PLoS ONE 5, e9868.Google Scholar