Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T18:05:38.236Z Has data issue: false hasContentIssue false

Modelling toxoplasma incidence from longitudinal seroprevalence in Stockholm, Sweden

Published online by Cambridge University Press:  06 April 2009

D. J. Nokes
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College, London SW7 2BB, UK
M. Forsgren
Affiliation:
Department of Virology, Central Microbiological Laboratory, S-107 26 Stockholm, Sweden
E. Gille
Affiliation:
Department of Parasitology, National Bacteriological Laboratory, S-105 21 Stockholm, Sweden
I. Ljungström
Affiliation:
Department of Parasitology, National Bacteriological Laboratory, S-105 21 Stockholm, Sweden

Summary

Age-stratified data on toxoplasma seroprevalence in pregnant women in Stockholm, Sweden for the years 1969, 1979 1987 provide the basis for an analysis of temporal patterns of Toxoplasma gondii infection, and estimation of the risk maternal toxoplasmosis, in this population. A catalytic infection model, in which the rate or force of infection is assumed to be a function of time (and not, as is more usual, age), was employed to describe the observed changes in levels toxoplasma seropositivity. A range of simple incidence functions (up to 3 parameters) were fitted using a method maximum likelihood. The data were significantly better described by a linear or an exponential decay in the rate of infection through time compared with a constant level. More complex incidence functions gave no better data description. Thus, whilst there is strong evidence for declining incidence in Stockholm over the past 4–5 decades, the data do not allow discrimination between different possibilities for the nature of this decline. Based on these modelling results, best estimates of the force of infection in 1987 acting on susceptible women are within the range 0 to 0·0045/susceptible/year (95% confidence limits), yielding a possible risk of maternal toxoplasmosis of between 0 and 2·7 cases/1000 pregnancies. These values are shown to be significantly lower than estimates based upon an assumption of temporal stability in toxoplasma incidence, which may be of practical significance to public health policy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ades, A. E. (1992). Methods for estimating the incidence of primary infection in pregnancy: a reappraisal of toxoplasmosis and cytomegalovirus data. Epidemiology and Infection 108, 367–75.CrossRefGoogle ScholarPubMed
Ahlfors, K., Borjeson, M., Huldt, G. & Forsberg, E. (1989). Incidence of toxoplasmosis in pregnant women in the city of Malmo, Sweden. Scandinavian Journal of Infectious Diseases 21, 315–21.CrossRefGoogle ScholarPubMed
Cubitt, W. D., Ades, A. E. & Peckham, C. S. (1992). Evaluation of five commercial assays for screening antenatal sera for antibodies to Toxoplasma gondii. Journal of Clinical Pathology 45, 435–8.CrossRefGoogle ScholarPubMed
Farrington, C. P. (1990). Modelling forces of infection for measles, mumps and rubella. Statistics in Medicine 9, 953–67.CrossRefGoogle ScholarPubMed
Forsgren, M., Gille, E., Ljungstrom, I. & Nokes, D. J. (1991). Antibodies against toxoplasma in pregnant women in Stockholm, Sweden in 1969, 1979 and 1987. Lancet i, 1413–14.CrossRefGoogle Scholar
Grenfell, B. T. & Anderson, R. M. (1985). The estimation of age-related rates of infection from case notifications and serological data. Journal of Hygiene 95, 419–36.CrossRefGoogle ScholarPubMed
Hall, S. (1983). Congenital toxoplasmosis in England, Wales and Northern Ireland: some epidemiological problems. British Medical Journal 287, 453–5.CrossRefGoogle ScholarPubMed
Johnson, J., Duffy, K., New, L., Holliman, R. E., Chessum, B. S. & Fleck, D. G. (1989). Direct agglutination test and other assays for measuring antibodies to Toxoplasma gondii. Journal of Clinical Pathology 42, 536–41.CrossRefGoogle ScholarPubMed
Koppe, J. G., Loewer-Sieger, D. H. & De Roever-Bonnet, H. (1988). Results of 20-year follow-up of congenital toxoplasmosis. Lancet 1, 254–6.Google Scholar
Logar, J., Novak-Antolic, Z., Zore, A., Cerar, V. & Likar, M. (1992). Incidence of congenital toxoplasmosis in the Republic of Slovenia. Scandinavian Journal of Infectious Diseases 24, 105–8.CrossRefGoogle ScholarPubMed
Lappalainen, M., Koskela, P., Hedman, K., Teramo, K., Ammala, P., Hilesmaa, V. & Koskiniema, M. (1992). Incidence of primary toxoplasma infections during pregnancy in southern Finland: a prospective cohort study. Scandinavian Journal of Infectious Diseases 24, 97104.CrossRefGoogle ScholarPubMed
Luft, B. & Remington, J. S. (1988). Toxoplasma encephalitis. Journal of Infectious Diseases 157, 16.CrossRefGoogle Scholar
Nelder, J. A. & Meade, R. (1965). A simplex method of function minimization. Computer Journal 7, 308–13.CrossRefGoogle Scholar
Nokes, D. J., Anderson, R. M. & Anderson, M. J. (1986). Rubella epidemiology in South East England. Journal of Hygiene 86, 291304.CrossRefGoogle Scholar
Nokes, D. J., Wright, J., Morgan-Capner, P. & Anderson, R. M. (1990). Serological study of the epidemiology of mumps virus infection in north-west England. Epidemiology and Infection 105, 175–95.CrossRefGoogle ScholarPubMed
Papoz, L., Simondon, F., Saurin, W. & Sarmini, H. (1986). A simple model relevant to toxoplasmosis applied to epidemiologic results in France. American Journal of Epidemiologology 123, 154–61.CrossRefGoogle ScholarPubMed
Remington, J. S. & Desmonts, G. (1990). Toxoplasmosis. In Infectious Diseases of the Fetus and Newborn Infant (ed. Remington, J. S. & Klein, J. O.), pp. 89195. Philadelphia: WB Saunders.Google Scholar
Schenzle, D., Dietz, K. & Frosner, G. G. (1979). Antibody against hepatitis A in seven European countries. II. Statistical analysis of cross-sectional surveys. American Journal of Epidemiology 110, 70–6.CrossRefGoogle Scholar
Walker, J., Nokes, D. J. & Jennings, R. (1992). Longitudinal study of toxoplasma seroprevalence in South Yorkshire. Epidemiology and Infection 108, 99106.CrossRefGoogle ScholarPubMed
Wetherill, G. B. (1981). Intermediate Statistical Methods. London: Chapman and Hall.CrossRefGoogle Scholar
Williams, K. A. B., Scott, J. M., MacFarlane, D. E., Williamson, J. M. W., Elias-Jones, T. F. & Williams, H. (1981). Congenital toxoplasmosis: a prospective survey in the West of Scotland. Journal of Infection 3, 219–29.CrossRefGoogle ScholarPubMed
Wreghitt, T. G., Gray, J. J. & Balfour, A. H. (1986). Problems with serological diagnosis of Toxoplasma gondii infections in heart transplant recipients. Journal of Clinical Pathology 39, 1135–9.CrossRefGoogle ScholarPubMed