Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T09:37:59.338Z Has data issue: false hasContentIssue false

Leishmania vaccines: progress and problems

Published online by Cambridge University Press:  02 February 2007

L. KEDZIERSKI
Affiliation:
Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Melbourne, Australia.
Y. ZHU
Affiliation:
Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Melbourne, Australia.
E. HANDMAN
Affiliation:
Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Melbourne, Australia.

Abstract

Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world resulting in an estimated 12 million new cases each year. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. Leishmaniasis is considered one of a few parasitic diseases likely to be controllable by vaccination. The relatively uncomplicated leishmanial life cycle and the fact that recovery from infection renders the host resistant to subsequent infection indicate that a successful vaccine is feasible. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunisation with protein or DNA vaccines. However, to date no such vaccine is available despite substantial efforts by many laboratories. Advances in our understanding of Leishmania pathogenesis and generation of host protective immunity, together with the completed Leishmania genome sequence open new avenues for vaccine research. The major remaining challenges are the translation of data from animal models to human disease and the transition from the laboratory to the field. This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelhak, S., Louzir, H., Timm, J., Blel, L., Benlasfar, Z., Lagranderie, M., Gheorghiu, M., Dellagi, K. and Gicquel, B. ( 1995). Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology 141, 15851592.CrossRefGoogle Scholar
Adler, S. and Gunders, A. E. ( 1964). Immunity to Leishmania mexicana following spontaneous recovery from oriental sore. Transactions of the Royal Society of Tropical Medicine and Hygiene 58, 274277.CrossRefGoogle Scholar
Aebischer, T., Wolfram, M., Patzer, S. I., Ilg, T., Wiese, M. and Overath, P. ( 2000). Subunit vaccination of mice against new world cutaneous leishmaniasis: comparison of three proteins expressed in amastigotes and six adjuvants. Infection and Immunity 68, 13281336.CrossRefGoogle Scholar
Afrin, F., Rajesh, R., Anam, K., Gopinath, M., Pal, S. and Ali, N. ( 2002). Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infection and Immunity 70, 66976706.CrossRefGoogle Scholar
Aguilar-Be, I., da Silva Zardo, R., Paraguai de Souza, E., Borja-Cabrera, G. P., Rosado-Vallado, M., Mut-Martin, M., Garcia-Miss Mdel, R., Palatnik de Sousa, C. B. and Dumonteil, E. ( 2005). Cross-protective efficacy of a prophylactic Leishmania donovani DNA vaccine against visceral and cutaneous murine leishmaniasis. Infection and Immunity 73, 812819.CrossRefGoogle Scholar
Ahmed, S. B., Bahloul, C., Robbana, C., Askri, S. and Dellagi, K. ( 2004). A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine 22, 16311639.CrossRefGoogle Scholar
Ahuja, S. S., Reddick, R. L., Sato, N., Montalbo, E., Kostecki, V., Zhao, W., Dolan, M. J., Melby, P. C. and Ahuja, S. K. ( 1999). Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. Journal of Immunology 163, 38903897.Google Scholar
Alarcon, J. B., Waine, G. W. and McManus, D. P. ( 1999). DNA vaccines: technology and application as anti-parasite and anti-microbial agents. Advances in Parasitology 42, 343410.CrossRefGoogle Scholar
Alexander, J. ( 1982). A radioattenuated Leishmania major vaccine markedly increases the resistance of CBA mice to subsequent infection with Leishmania mexicana mexicana. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 646649.CrossRefGoogle Scholar
Alexander, J. ( 1988). Sex differences and cross-immunity in DBA/2 mice infected with L. mexicana and L. major. Parasitology 96, 297302.Google Scholar
Alexander, J. and Bryson, K. ( 2005). T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunology Letters 99, 1723.CrossRefGoogle Scholar
Alexander, J., Coombs, G. H. and Mottram, J. C. ( 1998). Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. Journal of Immunology 161, 67946801.Google Scholar
Alexander, J. and Kaye, P. M. ( 1985). Immunoregulatory pathways in murine leishmaniasis: different regulatory control during Leishmania mexicana mexicana and Leishmania major infections. Clinical and Experimental Immunology 61, 674682.Google Scholar
Alexander, J. and Phillips, R. S. ( 1978). Leishmania tropica and Leishmania mexicana: cross-immunity in mice. Experimental Parasitology 45, 93100.CrossRefGoogle Scholar
Amaral, V. F., Teva, A., Oliveira-Neto, M. P., Silva, A. J., Pereira, M. S., Cupolillo, E., Porrozzi, R., Coutinho, S. G., Pirmez, C., Beverley, S. M. and Grimaldi, G. Jr. ( 2002). Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Memorias do Instituto Oswaldo Cruz 97, 10411048.CrossRefGoogle Scholar
Antunes, C. M., Mayrink, W., Magalhaes, P. A., Costa, C. A., Melo, M. N., Dias, M., Michalick, M. S., Williams, P., Lima, A. O., Vieira, J. B. and et al. ( 1986). Controlled field trials of a vaccine against New World cutaneous leishmaniasis. International Journal of Epidemiology 15, 572580.CrossRefGoogle Scholar
Armijos, R. X., Weigel, M. M., Calvopina, M., Hidalgo, A., Cevallos, W. and Correa, J. ( 2004). Safety, immunogenecity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis. Vaccine 22, 13201326.CrossRefGoogle Scholar
Ashford, R. W. ( 2000). The leishmaniases as emerging and reemerging zoonoses. International Journal for Parasitology 30, 12691281.CrossRefGoogle Scholar
Badovinac, V. P., Messingham, K. A., Jabbari, A., Haring, J. S. and Harty, J. T. ( 2005). Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nature Medicine 11, 748756.CrossRefGoogle Scholar
Baldwin, T. M., Elso, C., Curtis, J., Buckingham, L. and Handman, E. ( 2003). The site of Leishmania major infection determines disease severity and immune responses. Infection and Immunity 71, 68306834.CrossRefGoogle Scholar
Basu, R., Bhaumik, S., Basu, J. M., Naskar, K., De, T. and Roy, S. ( 2005). Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. Journal of Immunology 174, 71607171.CrossRefGoogle Scholar
Bebars, M. A., el Serougi, A. O., Makled, K. M., Mikhael, E. M., Abou Gamra, M. M., el Sherbiny, M., Mohareb, A. W. and Mohammed, E. A. ( 2000). An experimental vaccine providing heterologous protection for Leishmania species in murine model. Journal of the Egyptian Society of Parasitology 30, 137156.Google Scholar
Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. and Sacks, D. L. ( 2002). CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502507.CrossRefGoogle Scholar
Belkaid, Y., Valenzuela, J. G., Kamhawi, S., Rowton, E., Sacks, D. L. and Ribeiro, J. M. ( 2000). Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? Proceedings of the National Academy of Sciences, USA 97, 67046709.Google Scholar
Belkaid, Y., Von Stebut, E., Mendez, S., Lira, R., Caler, E., Bertholet, S., Udey, M. C. and Sacks, D. ( 2002). CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. Journal of Immunology 168, 39924000.CrossRefGoogle Scholar
Berberich, C., Ramirez-Pineda, J. R., Hambrecht, C., Alber, G., Skeiky, Y. A. and Moll, H. ( 2003). Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. Journal of Immunology 170, 31713179.CrossRefGoogle Scholar
Berman, J. ( 2003). Current treatment approaches to leishmaniasis. Current Opinion In Infectious Diseases 16, 397401.CrossRefGoogle Scholar
Berman, J. D., Badaro, R., Thakur, C. P., Wasunna, K. M., Behbehani, K., Davidson, R., Kuzoe, F., Pang, L., Weerasuriya, K. and Bryceson, A. D. ( 1998). Efficacy and safety of liposomal amphotericin B (AmBisome) for visceral leishmaniasis in endemic developing countries. Bulletin of the World Health Organization 76, 2532.Google Scholar
Borja-Cabrera, G. P., Cruz Mendes, A., Paraguai de Souza, E., Hashimoto Okada, L. Y., de Atrivellato, F. A., Kawasaki, J. K., Costa, A. C., Reis, A. B., Genaro, O., Batista, L. M., Palatnik, M. and Palatnik-de-Sousa, C. B. ( 2004). Effective immunotherapy against canine visceral leishmaniasis with the FML-vaccine. Vaccine 22, 22342243.CrossRefGoogle Scholar
Botelho, A. C., Tafuri, W. L., Genaro, O. and Mayrink, W. ( 1998). Histopathology of human American cutaneous leishmaniasis before and after treatment. Revista da Sociedade Brasileira de Medicina Tropical 31, 1118.CrossRefGoogle Scholar
Brandonisio, O., Spinelli, R. and Pepe, M. ( 2004). Dendritic cells in Leishmania infection. Microbes and Infection 6, 14021409.CrossRefGoogle Scholar
Breton, M., Tremblay, M. J., Ouellette, M. and Papadopoulou, B. ( 2005). Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infection and Immunity 73, 63726382.CrossRefGoogle Scholar
Cabrera, M., Blackwell, J. M., Castes, M., Trujillo, D., Convit, J. and Shaw, M. A. ( 2000). Immunotherapy with live BCG plus heat killed Leishmania induces a T helper 1-like response in American cutaneous leishmaniasis patients. Parasite Immunology 22, 7379.CrossRefGoogle Scholar
Campbell, K., Diao, H., Ji, J. and Soong, L. ( 2003). DNA immunization with the gene encoding P4 nuclease of Leishmania amazonensis protects mice against cutaneous leishmaniasis. Infection and Immunity 71, 62706278.CrossRefGoogle Scholar
Campos-Neto, A., Porrozzi, R., Greeson, K., Coler, R. N., Webb, J. R., Seiky, Y. A., Reed, S. G. and Grimaldi, G. Jr. ( 2001). Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infection and Immunity 69, 41034108.CrossRefGoogle Scholar
Campos-Neto, A., Webb, J. R., Greeson, K., Coler, R. N., Skeiky, Y. A. and Reed, S. G. ( 2002). Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infection and Immunity 70, 28282836.CrossRefGoogle Scholar
Cardoso, S. R., da Silva, J. C., da Costa, R. T., Mayrink, W., Melo, M. N., Michalick, M. S., Liu, I. A., Fujiwara, R. T. and Nascimento, E. ( 2003). Identification and purification of immunogenic proteins from nonliving promastigote polyvalent Leishmania vaccine (Leishvacin ). Revista da Sociedade Brasileira de Medicina Tropical 36, 193199.CrossRefGoogle Scholar
Champsi, J. and McMahon-Pratt, D. ( 1988). Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infection and Immunity 56, 32723279.Google Scholar
Chen, G., Darrah, P. A. and Mosser, D. M. ( 2001). Vaccination against the intracellular pathogens Leishmania major and L. amazonensis by directing CD40 ligand to macrophages. Infection and Immunity 69, 32553263.Google Scholar
Clemens, J. and Jodar, L. ( 2005). Introducing new vaccines into developing countries: obstacles, opportunities and complexities. Nature Medicine 11, S12S15.CrossRefGoogle Scholar
Coler, R. N. and Reed, S. G. ( 2005). Second-generation vaccines against leishmaniasis. Trends in Parasitology 21, 244249.CrossRefGoogle Scholar
Coler, R. N., Skeiky, Y. A., Bernards, K., Greeson, K., Carter, D., Cornellison, C. D., Modabber, F., Campos-Neto, A. and Reed, S. G. ( 2002). Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infection and Immunity 70, 42154225.CrossRefGoogle Scholar
Connell, N. D., Medina-Acosta, E., McMaster, W. R., Bloom, B. R. and Russell, D. G. ( 1993). Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proceedings of the National Academy of Sciences, USA 90, 1147311477.CrossRefGoogle Scholar
Convit, J., Ulrich, M., Polegre, M. A., Avila, A., Rodriguez, N., Mazzedo, M. I. and Blanco, B. ( 2004). Therapy of Venezuelan patients with severe mucocutaneous or early lesions of diffuse cutaneous leishmaniasis with a vaccine containing pasteurized Leishmania promastigotes and bacillus Calmette-Guerin: preliminary report. Memorias do Instituto Oswaldo Cruz 99, 5762.CrossRefGoogle Scholar
Convit, J., Ulrich, M., Zerpa, O., Borges, R., Aranzazu, N., Valera, M., Villarroel, H., Zapata, Z. and Tomedes, I. ( 2003). Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990–99. Transactions of Royal Society of Tropical Medicine and Hygiene 97, 469472.CrossRefGoogle Scholar
Cupolillo, E., Medina-Acosta, E., Noyes, H., Momen, H. and Grimaldi, G. Jr. ( 2000). A revised classification for Leishmania and Endotrypanum. Parasitology Today 16, 142144.CrossRefGoogle Scholar
Davis, A. J. and Kedzierski, L. ( 2005). Recent advances in antileishmanial drug development. Current Opinion in Investigational Drugs 6, 163169.Google Scholar
Davoudi, N., Tate, C. A., Warburton, C., Murray, A., Mahboudi, F. and McMaster, W. R. ( 2005). Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine 23, 11701177.CrossRefGoogle Scholar
De Luca, P. M., Mayrink, W., Alves, C. R., Coutinho, S. G., Oliveira, M. P., Bertho, A. L., Toledo, V. P., Costa, C. A., Genaro, O. and Mendonca, S. C. ( 1999). Evaluation of the stability and immunogenicity of autoclaved and nonautoclaved preparations of a vaccine against American tegumentary leishmaniasis. Vaccine 17, 11791185.CrossRefGoogle Scholar
De Luca, P. M., Mayrink, W., Pinto, J. A., Coutinho, S. G., Santiago, M. A., Toledo, V. P., Costa, C. A., Genaro, O., Reis, A. B. and Mendonca, S. C. ( 2001). A randomized double-blind placebo-controlled trial to evaluate the immunogenicity of a candidate vaccine against American tegumentary leishmaniasis. Acta Tropica 80, 251260.CrossRefGoogle Scholar
De Rossell, R. A., Bray, R. S. and Alexander, J. ( 1987). The correlation between delayed hypersensitivity, lymphocyte activation and protective immunity in experimental murine leishmaniasis. Parasite Immunology 9, 105115.CrossRefGoogle Scholar
Dondji, B., Perez-Jimenez, E., Goldsmith-Pestana, K., Esteban, M. and McMahon-Pratt, D. ( 2005). Heterologous prime-boost vaccination with the LACK antigen protects against murine visceral leishmaniasis. Infection and Immunity 73, 52865289.CrossRefGoogle Scholar
Dumonteil, E., Andrade-Narvarez, F., Escobedo-Ortegon, J., Ramirez-Sierra, M. J., Valencia-Pacheco, G., Flores-Serrano, A., Canto-Lara, S. and Arjona-Torres, A. ( 2000). Comparative study of DNA vaccines encoding various antigens against Leishmania mexicana. Development in Biologicals 104, 135141.Google Scholar
Dumonteil, E., Maria Jesus, R. S., Javier, E. O. and Maria del Rosario, G. M. ( 2003). DNA vaccines induce partial protection against Leishmania mexicana. Vaccine 21, 21612168.CrossRefGoogle Scholar
Evans, T. G. ( 1993). Leishmaniasis. Infectious Disease Clinics of North America 7, 527546.Google Scholar
Flohe, S. B., Bauer, C., Flohe, S. and Moll, H. ( 1998). Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. European Journal of Immunology 28, 38003811.3.0.CO;2-0>CrossRefGoogle Scholar
Fragaki, K., Suffia, I., Ferrua, B., Rousseau, D., Le Fichoux, Y. and Kubar, J. ( 2001). Immunisation with DNA encoding Leishmania infantum protein papLe22 decreases the frequency of parasitemic episodes in infected hamsters. Vaccine 19, 17011709.CrossRefGoogle Scholar
Fujiwara, R. T., Vale, A. M., Franca da Silva, J. C., da Costa, R. T., Quetz Jda, S., Martins Filho, O. A., Reis, A. B., Correa Oliveira, R., Machado-Coelho, G. L., Bueno, L. L., Bethony, J. M., Frank, G., Nascimento, E., Genaro, O., Mayrink, W., Reed, S. and Campos-Neto, A. ( 2005). Immunogenicity in dogs of three recombinant antigens (TSA, LeIF and LmSTI1) potential vaccine candidates for canine visceral leishmaniasis. Veterinary Research 36, 827838.CrossRefGoogle Scholar
Genaro, O., de Toledo, V. P., da Costa, C. A., Hermeto, M. V., Afonso, L. C. and Mayrink, W. ( 1996). Vaccine for prophylaxis and immunotherapy, Brazil. Clinical Dermatology 14, 503512.CrossRefGoogle Scholar
Ghosh, A., Labrecque, S. and Matlashewski, G. ( 2001). Protection against Leishmania donovani infection by DNA vaccination: increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine 19, 31693178.CrossRefGoogle Scholar
Ghosh, A., Madhubala, R., Myler, P. J. and Stuart, K. D. ( 1999). Leishmania donovani: characterization and expression of ORFF, a gene amplified from the LDI locus. Experimental Parasitology 93, 225230.CrossRefGoogle Scholar
Ghosh, A., Zhang, W. W. and Matlashewski, G. ( 2001). Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20, 5966.CrossRefGoogle Scholar
Ghosh, M., Pal, C., Ray, M., Maitra, S., Mandal, L. and Bandyopadhyay, S. ( 2003). Dendritic cell-based immunotherapy combined with antimony-based chemotherapy cures established murine visceral leishmaniasis. Journal of Immunology 170, 56255629.CrossRefGoogle Scholar
Gicheru, M. M., Olobo, J. O. and Anjili, C. O. ( 1997). Heterologous protection by Leishmania donovani for Leishmania major infections in the vervet monkey model of the disease. Experimental Parasitology 85, 109116.CrossRefGoogle Scholar
Gicheru, M. M., Olobo, J. O., Anjili, C. O., Orago, A. S., Modabber, F. and Scott, P. ( 2001). Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infection and Immunity 69, 245251.CrossRefGoogle Scholar
Gollob, K. J., Antonelli, L. R. and Dutra, W. O. ( 2005). Insights into CD4+ memory T cells following Leishmania infection. Trends in Parasitology 21, 347350.CrossRefGoogle Scholar
Gonzalez, C. R., Noriega, F. R., Huerta, S., Santiago, A., Vega, M., Paniagua, J., Ortiz-Navarrete, V., Isibasi, A. and Levine, M. M. ( 1998). Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania mexicana mexicana. Vaccine 16, 10431052.CrossRefGoogle Scholar
Gonzalez-Aseguinolaza, G., Taladriz, S., Marquet, A. and Larraga, V. ( 1999). Molecular cloning, cell localization and binding affinity to DNA replication proteins of the p36/LACK protective antigen from Leishmania infantum. European Journal of Biochemistry 259, 909916.CrossRefGoogle Scholar
Gonzalo, R. M., del Real, G., Rodriguez, J. R., Rodriguez, D., Heljasvaara, R., Lucas, P., Larraga, V. and Esteban, M. ( 2002). A heterologous prime-boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine 20, 12261231.CrossRefGoogle Scholar
Gonzalo, R. M., Rodriguez, J. R., Rodriguez, D., Gonzalez-Aseguinolaza, G., Larraga, V. and Esteban, M. ( 2001). Protective immune response against cutaneous leishmaniasis by prime/booster immunization regimens with vaccinia virus recombinants expressing Leishmania infantum p36/LACK and IL-12 in combination with purified p36. Microbes and Infection 3, 701711.CrossRefGoogle Scholar
Gradoni, L., Foglia Manzillo, V., Pagano, A., Piantedosi, D., De Luna, R., Gramiccia, M., Scalone, A., Di Muccio, T. and Oliva, G. ( 2005). Failure of a multi-subunit recombinant leishmanial vaccine (MML) to protect dogs from Leishmania infantum infection and to prevent disease progression in infected animals. Vaccine 23, 52455251.CrossRefGoogle Scholar
Greenblatt, C. L. ( 1988). Cutaneous leishmaniasis: The prospects for a killed vaccine. Parasitology Today 4, 5354.CrossRefGoogle Scholar
Gumy, A., Louis, J. A. and Launois, P. ( 2004). The murine model of infection with Leishmania major and its importance for the deciphering of mechanisms underlying differences in Th cell differentiation in mice from different genetic backgrounds. International Journal for Parasitology 34, 433444.CrossRefGoogle Scholar
Gurunathan, S., Klinman, D. M. and Seder, R. A. ( 2000). DNA vaccines: immunology, application, and optimization. Annual Review of Immunology 18, 927974.CrossRefGoogle Scholar
Gurunathan, S., Prussin, C., Sacks, D. L. and Seder, R. A. ( 1998). Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nature Medicine 4, 14091415.CrossRefGoogle Scholar
Gurunathan, S., Sacks, D. L., Brown, D. R., Reiner, S. L., Charest, H., Glaichenhaus, N. and Seder, R. A. ( 1997). Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. Journal of Experimental Medicine 186, 11371147.CrossRefGoogle Scholar
Gurunathan, S., Stobie, L., Prussin, C., Sacks, D. L., Glaichenhaus, N., Iwasaki, A., Fowell, D. J., Locksley, R. M., Chang, J. T., Wu, C. Y. and Seder, R. A. ( 2000). Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+ T cells. Journal of Immunology 165, 915924.CrossRefGoogle Scholar
Haberer, J. E., Da-Cruz, A. M., Soong, L., Oliveira-Neto, M. P., Rivas, L., McMahon-Pratt, D. and Coutinho, S. G. ( 1998). Leishmania pifanoi amastigote antigen P-4: epitopes involved in T-cell responsiveness in human cutaneous leishmaniasis. Infection and Immunity 66, 31003105.Google Scholar
Handman, E. ( 1999). Cell biology of Leishmania. Advances in Parasitology 44, 139.CrossRefGoogle Scholar
Handman, E. ( 2001). Leishmaniasis: current status of vaccine development. Clinical Microbiology Reviews 14, 229243.CrossRefGoogle Scholar
Handman, E., Button, L. L. and McMaster, R. W. ( 1990). Leishmania major: production of recombinant gp63, its antigenicity and immunogenicity in mice. Experimental Parasitology 70, 427435.CrossRefGoogle Scholar
Handman, E. and Mitchell, G. F. ( 1985). Immunization with Leishmania receptor for macrophages protects mice against cutaneous leishmaniasis. Proceedings of the National Academy of Sciences, USA 82, 59105914.CrossRefGoogle Scholar
Handman, E., Noormohammadi, A. H., Curtis, J. M., Baldwin, T. and Sjolander, A. ( 2000). Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine 18, 30113017.CrossRefGoogle Scholar
Handman, E., Symons, F. M., Baldwin, T. M., Curtis, J. M. and Scheerlinck, J. P. ( 1995). Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response. Infection and Immunity 63, 42614267.Google Scholar
Hommel, M., Jaffe, C. L., Travi, B. and Milon, G. ( 1995). Experimental models for leishmaniasis and for testing anti-leishmanial vaccines. Annals of Tropical Medicine and Parasitology 89 (Suppl 1), 5573.CrossRefGoogle Scholar
Huang, C. and Turco, S. J. ( 1993). Defective galactofuranose addition in lipophosphoglycan biosynthesis in a mutant of Leishmania donovani. Journal of Biological Chemistry 268, 2406024066.Google Scholar
Iborra, S., Carrion, J., Anderson, C., Alonso, C., Sacks, D. and Soto, M. ( 2005). Vaccination with the Leishmania infantum acidic ribosomal P0 protein plus CpG oligodeoxynucleotides induces protection against cutaneous leishmaniasis in C57BL/6 mice but does not prevent progressive disease in BALB/c mice. Infection and Immunity 73, 58425852.CrossRefGoogle Scholar
Iborra, S., Soto, M., Carrion, J., Nieto, A., Fernandez, E., Alonso, C. and Requena, J. M. ( 2003). The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/c mice. Infection and Immunity 71, 65626572.CrossRefGoogle Scholar
Ilg, T. ( 2000). Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO Journal 19, 19531962.CrossRefGoogle Scholar
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., et al. ( 2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436442.CrossRefGoogle Scholar
Jaffe, C. L., Rachamim, N. and Sarfstein, R. ( 1990). Characterization of two proteins from Leishmania donovani and their use for vaccination against visceral leishmaniasis. Journal of Immunology 144, 699706.Google Scholar
Jaffe, C. L., Shor, R., Trau, H. and Passwell, J. H. ( 1990). Parasite antigens recognized by patients with cutaneous leishmaniasis. Clinical and Experimental Immunology 80, 7782.CrossRefGoogle Scholar
Jardim, A., Alexander, J., Teh, H. S., Ou, D. and Olafson, R. W. ( 1990). Immunoprotective Leishmania major synthetic T cell epitopes. Journal of Experimental Medicine 172, 645648.CrossRefGoogle Scholar
Jimenez-Ruiz, A., Boceta, C., Bonay, P., Requena, J. M. and Alonso, C. ( 1998). Cloning, sequencing, and expression of the PSA genes from Leishmania infantum. European Journal of Biochemistry 251, 389397.CrossRefGoogle Scholar
Julia, V. and Glaichenhaus, N. ( 1999). CD4(+) T cells which react to the Leishmania major LACK antigen rapidly secrete interleukin-4 and are detrimental to the host in resistant B10.D2 mice. Infection and Immunity 67, 36413644.Google Scholar
Julia, V., Rassoulzadegan, M. and Glaichenhaus, N. ( 1996). Resistance to Leishmania major induced by tolerance to a single antigen. Science 274, 421423.CrossRefGoogle Scholar
Kamhawi, S. ( 2000). The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes and Infection 2, 17651773.CrossRefGoogle Scholar
Kamhawi, S., Belkaid, Y., Modi, G., Rowton, E. and Sacks, D. ( 2000). Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290, 13511354.CrossRefGoogle Scholar
Kamil, A. A., Khalil, E. A., Musa, A. M., Modabber, F., Mukhtar, M. M., Ibrahim, M. E., Zijlstra, E. E., Sacks, D., Smith, P. G., Zicker, F. and El-Hassan, A. M. ( 2003). Alum-precipitated autoclaved Leishmania major plus bacille Calmette-Guerrin, a candidate vaccine for visceral leishmaniasis: safety, skin-delayed type hypersensitivity response and dose finding in healthy volunteers. Transactions of Royal Society of Tropical Medicine and Hygiene 97, 365368.CrossRefGoogle Scholar
Kar, S., Metz, C. and McMahon-Pratt, D. ( 2005). CD4+ T cells play a dominant role in protection against New World leishmaniasis induced by vaccination with the P-4 amastigote antigen. Infection and Immunity 73, 38233827.CrossRefGoogle Scholar
Kar, S., Soong, L., Colmenares, M., Goldsmith-Pestana, K. and McMahon-Pratt, D. ( 2000). The immunologically protective P-4 antigen of Leishmania amastigotes. A developmentally regulated single strand-specific nuclease associated with the endoplasmic reticulum. Journal of Biological Chemistry 275, 3778937797.Google Scholar
Kebaier, C., Uzonna, J., Beverley, S. M. and Scott, P. ( 2006). Immunization with persistent attenuated (delta)lpg2 Leishmania major parasites requires adjuvant to provide protective immunity in C57BL/6 mice. Infection and Immunity 74, 777780.CrossRefGoogle Scholar
Kedzierski, L., Montgomery, J., Bullen, D., Curtis, J., Gardiner, E., Jimenez-Ruiz, A. and Handman, E. ( 2004). A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3. Journal of Immunology 172, 49024906.CrossRefGoogle Scholar
Kemp, M., Theander, T. G., Handman, E., Hey, A. S., Kurtzhals, J. A., Hviid, L., Sorensen, A. L., Were, J. O., Koech, D. K. and Kharazmi, A. ( 1991). Activation of human T lymphocytes by Leishmania lipophosphoglycan. Scandinavian Journal of Immunology 33, 219224.CrossRefGoogle Scholar
Khalil, E. A., El Hassan, A. M., Zijlstra, E. E., Mukhtar, M. M., Ghalib, H. W., Musa, B., Ibrahim, M. E., Kamil, A. A., Elsheikh, M., Babiker, A. and Modabber, F. ( 2000). Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356, 15651569.CrossRefGoogle Scholar
Khamesipour, A., Dowlati, Y., Asilian, A., Hashemi-Fesharki, R., Javadi, A., Noazin, S. and Modabber, F. ( 2005). Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23, 36423648.CrossRefGoogle Scholar
Lainson, R. and Bray, R. S. ( 1966). Studies on the immunology and serology of leishmaniasis. II. Cross-immunity experiments among different forms of American cutaneous leishmaniasis in monkeys. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 526532.Google Scholar
Lainson, R. and Shaw, J. J. ( 1966). Studies on the immunology and serology of leishmaniasis. 3. on the cross-immunity between Panamanian cutaneous leishmaniasis and Leishmania mexicana infection in man. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 533535.Google Scholar
Lainson, R. and Shaw, J. J. ( 1977). Leishmaniasis in Brazil: XII. Observations on cross-immunity in monkeys and man infected with Leishmania mexicana mexicana, L. m. amazonensis, L. braziliensis braziliensis, L. b. guyanensis and L. b. panamensis. Journal of Tropical Medicine and Hygiene 80, 2935.Google Scholar
Lambert, P. H., Liu, M. and Siegrist, C. A. ( 2005). Can successful vaccines teach us how to induce efficient protective immune responses? Nature Medicine 11, S5462.Google Scholar
Lange, U. G., Mastroeni, P., Blackwell, J. M. and Stober, C. B. ( 2004). DNA-Salmonella enterica serovar Typhimurium primer-booster vaccination biases towards T helper 1 responses and enhances protection against Leishmania major infection in mice. Infection and Immunity 72, 49244928.CrossRefGoogle Scholar
Launois, P., Maillard, I., Pingel, S., Swihart, K. G., Xenarios, I., Acha-Orbea, H., Diggelmann, H., Locksley, R. M., MacDonald, H. R. and Louis, J. A. ( 1997). IL-4 rapidly produced by V beta 4 V alpha 8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6, 541549.CrossRefGoogle Scholar
Lohman, K. L., Langer, P. J. and McMahon-Pratt, D. ( 1990). Molecular cloning and characterization of the immunologically protective surface glycoprotein GP46/M-2 of Leishmania amazonensis. Proceedings of the National Academy of Sciences, USA 87, 83938397.CrossRefGoogle Scholar
Lopez-Fuertes, L., Perez-Jimenez, E., Vila-Coro, A. J., Sack, F., Moreno, S., Konig, S. A., Junghans, C., Wittig, B., Timon, M. and Esteban, M. ( 2002). DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 21, 247257.CrossRefGoogle Scholar
Louis, J., Gumy, A., Voigt, H., Rocken, M. and Launois, P. ( 2002). Experimental cutaneous leishmaniasis: a powerful model to study in vivo the mechanisms underlying genetic differences in Th subset differentiation. European Journal of Dermatology 12, 316318.Google Scholar
Lujan, R., Chapman, W. L. Jr, Hanson, W. L. and Dennis, V. A. ( 1990). Leishmania braziliensis in the squirrel monkey: development of primary and satellite lesions and lack of cross-immunity with Leishmania donovani. Journal of Parasitology 76, 594597.CrossRefGoogle Scholar
Machado-Pinto, J., Pinto, J., da Costa, C. A., Genaro, O., Marques, M. J., Modabber, F. and Mayrink, W. ( 2002). Immunochemotherapy for cutaneous leishmaniasis: a controlled trial using killed Leishmania (Leishmania) amazonensis vaccine plus antimonial. International Journal of Dermatology 41, 7378.CrossRefGoogle Scholar
Marques-da-Silva, E. A., Coelho, E. A., Gomes, D. C., Vilela, M. C., Masioli, C. Z., Tavares, C. A., Fernandes, A. P., Afonso, L. C. and Rezende, S. A. ( 2005). Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-gamma production but does not protect BALB/c mice against Leishmania chagasi intravenous challenge. Parasitology Research 98, 6774.CrossRefGoogle Scholar
Marzochi, K. B., Marzochi, M. A., Silva, A. F., Grativol, N., Duarte, R., Confort, E. M. and Modabber, F. ( 1998). Phase 1 study of an inactivated vaccine against American tegumentary leishmaniasis in normal volunteers in Brazil. Memorias do Instituto Oswaldo Cruz 93, 205212.CrossRefGoogle Scholar
Mauel, J. and Behin, R. ( 1982). Leishmaniasis immunity, immunopathology and immunodiagnostics. In Immunity to Parasitic Infections. ( eds. Cohen, S. and Waren, K. S.) Oxford: Blackwell Sci. 34433463.
Mayrink, W., Antunes, C. M., Da Costa, C. A., Melo, M. N., Dias, M., Michalick, M. S., Magalhaes, P. A., De Oliveira Lima, A. and Williams, P. ( 1986). Further trials of a vaccine against American cutaneous leishmaniasis. Transactions of Royal Society of Tropical Medicine and Hygiene 80, 1001.CrossRefGoogle Scholar
Mayrink, W., da Costa, C. A., Magalhaes, P. A., Melo, M. N., Dias, M., Lima, A. O., Michalick, M. S. and Williams, P. ( 1979). A field trial of a vaccine against American dermal leishmaniasis. Transactions of Royal Society of Tropical Medicine and Hygiene 73, 385387.CrossRefGoogle Scholar
Mayrink, W., Williams, P., da Costa, C. A., Magalhaes, P. A., Melo, M. N., Dias, M., Oliveira Lima, A., Michalick, M. S., Ferreira Carvalho, E., Barros, G. C. and et al. ( 1985). An experimental vaccine against American dermal leishmaniasis: experience in the State of Espirito Santo, Brazil. Annals of Tropical Medicine and Parasitology 79, 259269.CrossRefGoogle Scholar
McConville, M. J., Bacic, A., Mitchell, G. F. and Handman, E. ( 1987). Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor. Proceedings of the National Academy of Sciences, USA 84, 89418945.CrossRefGoogle Scholar
McMahon-Pratt, D. and Alexander, J. ( 2004). Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunological Reviews 201, 206224.Google Scholar
McMahon-Pratt, D., Rodriguez, D., Rodriguez, J. R., Zhang, Y., Manson, K., Bergman, C., Rivas, L., Rodriguez, J. F., Lohman, K. L., Ruddle, N. H. and et al. ( 1993). Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infection and Immunity 61, 33513359.Google Scholar
McMahon-Pratt, D., Traub-Cseko, Y., Lohman, K. L., Rogers, D. D. and Beverley, S. M. ( 1992). Loss of the GP46/M-2 surface membrane glycoprotein gene family in the Leishmania braziliensis complex. Molecular and Biochemical Parasitology 50, 151160.CrossRefGoogle Scholar
McShane, H. ( 2002). Prime-boost immunization strategies for infectious diseases. Current Opinion in Molecular Therapeutics 4, 2327.Google Scholar
McSorley, S. J., Xu, D. and Liew, F. Y. ( 1997). Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infection and Immunity 65, 171178.Google Scholar
Melby, P. C., Yang, J., Zhao, W., Perez, L. E. and Cheng, J. ( 2001). Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infection and Immunity 69, 47194725.CrossRefGoogle Scholar
Mendez, S., Belkaid, Y., Seder, R. A. and Sacks, D. ( 2002). Optimization of DNA vaccination against cutaneous leishmaniasis. Vaccine 20, 37023708.CrossRefGoogle Scholar
Mendez, S., Gurunathan, S., Kamhawi, S., Belkaid, Y., Moga, M. A., Skeiky, Y. A., Campos-Neto, A., Reed, S., Seder, R. A. and Sacks, D. ( 2001). The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. Journal of Immunology 166, 51225128.CrossRefGoogle Scholar
Mendonca, S. C., Russell, D. G. and Coutinho, S. G. ( 1991). Analysis of the human T cell responsiveness to purified antigens of Leishmania: lipophosphoglycan (LPG) and glycoprotein 63 (gp 63). Clinical and Experimental Immunology 83, 472478.CrossRefGoogle Scholar
Misra, A., Dube, A., Srivastava, B., Sharma, P., Srivastava, J. K., Katiyar, J. C. and Naik, S. ( 2001). Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine 19, 34853492.CrossRefGoogle Scholar
Mitchell, G. F. and Handman, E. ( 1986). The glycoconjugate derived from a Leishmania major receptor for macrophages is a suppressogenic, disease-promoting antigen in murine cutaneous leishmaniasis. Parasite Immunology 8, 255263.CrossRefGoogle Scholar
Mohebali, M., Khamesipour, A., Mobedi, I., Zarei, Z. and Hashemi-Fesharki, R. ( 2004). Double-blind randomized efficacy field trial of alum precipitated autoclaved Leishmania major vaccine mixed with BCG against canine visceral leishmaniasis in Meshkin-Shahr district, I.R. Iran. Vaccine 22, 40974100.CrossRefGoogle Scholar
Molano, I., Alonso, M. G., Miron, C., Redondo, E., Requena, J. M., Soto, M., Nieto, C. G. and Alonso, C. ( 2003). A Leishmania infantum multi-component antigenic protein mixed with live BCG confers protection to dogs experimentally infected with L. infantum. Veterinary Immunology and Immunopathology 92, 113.CrossRefGoogle Scholar
Moll, H. and Berberich, C. ( 2001). Dendritic cell-based vaccination strategies: induction of protective immunity against leishmaniasis. Immunobiology 204, 659666.CrossRefGoogle Scholar
Montgomery, J., Ilg, T., Thompson, J. K., Kobe, B. and Handman, E. ( 2000). Identification and predicted structure of a leucine-rich repeat motif shared by Leishmania major proteophosphoglycan and Parasite Surface Antigen 2. Molecular and Biochemical Parasitology 107, 289295.CrossRefGoogle Scholar
Mora, A. M., Mayrink, W., Costa, R. T., Costa, C. A., Genaro, O. and Nascimento, E. ( 1999). Protection of C57BL/10 mice by vaccination with association of purified proteins from Leishmania (Leishmania) amazonensis. Revista do Instito de Medicine Tropical do Sao Paulo 41, 243248.CrossRefGoogle Scholar
Morris, R. V., Shoemaker, C. B., David, J. R., Lanzaro, G. C. and Titus, R. G. ( 2001). Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. Journal of Immunology 167, 52265230.CrossRefGoogle Scholar
Mougneau, E., Altare, F., Wakil, A. E., Zheng, S., Coppola, T., Wang, Z. E., Waldmann, R., Locksley, R. M. and Glaichenhaus, N. ( 1995). Expression cloning of a protective Leishmania antigen. Science 268, 563566.CrossRefGoogle Scholar
Murray, H. W. ( 2004). Progress in the treatment of a neglected infectious disease: visceral leishmaniasis. Expert Review of Anti-Infective Therapy 2, 279292.CrossRefGoogle Scholar
Murray, P. J. and Spithill, T. W. ( 1991). Variants of a Leishmania surface antigen derived from a multigenic family. Journal of Biological Chemistry 266, 2447724484.Google Scholar
Murray, P. J., Spithill, T. W. and Handman, E. ( 1989). The PSA-2 glycoprotein complex of Leishmania major is a glycosylphosphatidylinositol-linked promastigote surface antigen. Journal of Immunology 143, 42214226.Google Scholar
Muyombwe, A., Olivier, M., Ouellette, M. and Papadopoulou, B. ( 1997). Selective killing of Leishmania amastigotes expressing a thymidine kinase suicide gene. Experimental Parasitology 85, 3542.CrossRefGoogle Scholar
Nadim, A., Javadian, E., Tahvildar-Bidruni, G. and Ghorbani, M. ( 1983). Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bulletin de la Société de Pathologie Exotique et de ses Filiales 76, 377383.Google Scholar
Nakhaee, A., Taheri, T., Taghikhani, M., Mohebali, M., Salmanian, A. H., Fasel, N. and Rafati, S. ( 2004). Humoral and cellular immune responses against Type I cysteine proteinase of Leishmania infantum are higher in asymptomatic than symptomatic dogs selected from a naturally infected population. Veterinary Parasitology 119, 107123.CrossRefGoogle Scholar
Nascimento, E., Mayrink, W., da Costa, C. A., Michalick, M. S., Melo, M. N., Barros, G. C., Dias, M., Antunes, C. M., Lima, M. S., Taboada, D. C. and et al. ( 1990). Vaccination of humans against cutaneous leishmaniasis: cellular and humoral immune responses. Infection and Immunity 58, 21982203.Google Scholar
Olobo, J. O., Anjili, C. O., Gicheru, M. M., Mbati, P. A., Kariuki, T. M., Githure, J. I., Koech, D. K. and McMaster, W. R. ( 1995). Vaccination of vervet monkeys against cutaneous leishmaniosis using recombinant Leishmania ‘major surface glycoprotein’ (gp63). Veterinary Parasitology 60, 199212.CrossRefGoogle Scholar
Paul, Y. ( 2005). Polio Eradication: Let us Face the Facts and Accept the Reality. Indian Pediatrics 42, 728729.Google Scholar
Perez, H., Arredondo, B. and Machado, R. ( 1979). Leishmania mexicana and Leishmania tropica: cross immunity in C57BL/6 mice. Experimental Parasitology 48, 914.CrossRefGoogle Scholar
Pinto, E. F., Pinheiro, R. O., Rayol, A., Larraga, V. and Rossi-Bergmann, B. ( 2004). Intranasal vaccination against cutaneous leishmaniasis with a particulated leishmanial antigen or DNA encoding LACK. Infection and Immunity 72, 45214527.CrossRefGoogle Scholar
Plotkin, S. A. ( 2005). Vaccines: past, present and future. Nature Medicine 11, S511.CrossRefGoogle Scholar
Porrozzi, R., Teva, A., Amaral, V. F., Santos da Costa, M. V. and Grimaldi, G. Jr. ( 2004). Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca Mulatta). American Journal of Tropical Medicine and Hygiene 71, 297305.Google Scholar
Rachamim, N. and Jaffe, C. L. ( 1993). Pure protein from Leishmania donovani protects mice against both cutaneous and visceral leishmaniasis. Journal of Immunology 150, 23222331.Google Scholar
Rafati, S., Baba, A. A., Bakhshayesh, M. and Vafa, M. ( 2000). Vaccination of BALB/c mice with Leishmania major amastigote-specific cysteine proteinase. Clinical and Experimental Immunology 120, 134138.CrossRefGoogle Scholar
Rafati, S., Fasel, N. and Masina, S. ( 2003). Leishmania cysteine proteinases: from gene to subunit vaccine. Current Genomics 4, 253261.CrossRefGoogle Scholar
Rafati, S., Kariminia, A., Seyde-Eslami, S., Narimani, M., Taheri, T. and Lebbatard, M. ( 2002). Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon gamma producing CD8(+) T lymphocyte activation. Vaccine 20, 24392447.CrossRefGoogle Scholar
Rafati, S., Nakhaee, A., Taheri, T., Ghashghaii, A., Salmanian, A. H., Jimenez, M., Mohebali, M., Masina, S. and Fasel, N. ( 2003). Expression of cysteine proteinase type I and II of Leishmania infantum and their recognition by sera during canine and human visceral leishmaniasis. Experimental Parasitology 103, 143151.CrossRefGoogle Scholar
Rafati, S., Nakhaee, A., Taheri, T., Taslimi, Y., Darabi, H., Eravani, D., Sanos, S., Kaye, P., Taghikhani, M., Jamshidi, S. and Rad, M. A. ( 2005). Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 23, 37163725.CrossRefGoogle Scholar
Rafati, S., Salmanian, A. H., Hashemi, K., Schaff, C., Belli, S. and Fasel, N. ( 2001). Identification of Leishmania major cysteine proteinases as targets of the immune response in humans. Molecular and Biochemical Parasitology 113, 3543.CrossRefGoogle Scholar
Ramiro, M. J., Zarate, J. J., Hanke, T., Rodriguez, D., Rodriguez, J. R., Esteban, M., Lucientes, J., Castillo, J. A. and Larraga, V. ( 2003). Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine 21, 24742484.CrossRefGoogle Scholar
Ravindran, R. and Ali, N. ( 2004). Progress in vaccine research and possible effector mechanisms in visceral leishmaniasis. Current Molecular Medicine 4, 697709.CrossRefGoogle Scholar
Reed, S. G. and Campos-Neto, A. ( 2003 a). Vaccines for parasitic and bacterial diseases. Current Opinion in Immunology 15, 456460.Google Scholar
Reed, S. G., Coler, R. N. and Campos-Neto, A. ( 2003 b). Development of a leishmaniasis vaccine: the importance of MPL. Expert Reviews of Vaccines 2, 239252.Google Scholar
Requena, J. M., Soto, M., Doria, M. D. and Alonso, C. ( 2000). Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Veterinary Immunology and Immunopathology 76, 269281.CrossRefGoogle Scholar
Restifo, N. P., Ying, H., Hwang, L. and Leitner, W. W. ( 2000). The promise of nucleic acid vaccines. Gene Therapy 7, 8992.CrossRefGoogle Scholar
Rhee, E. G., Mendez, S., Shah, J. A., Wu, C. Y., Kirman, J. R., Turon, T. N., Davey, D. F., Davis, H., Klinman, D. M., Coler, R. N., Sacks, D. L. and Seder, R. A. ( 2002). Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. Journal of Experimental Medicine 195, 15651573.CrossRefGoogle Scholar
Rivier, D., Bovay, P., Shah, R., Didisheim, S. and Mauel, J. ( 1999). Vaccination against Leishmania major in a CBA mouse model of infection: role of adjuvants and mechanism of protection. Parasite Immunology 21, 461473.CrossRefGoogle Scholar
Roberts, M. T., Stober, C. B., McKenzie, A. N. and Blackwell, J. M. ( 2005). Interleukin-4 (IL-4) and IL-10 collude in vaccine failure for novel exacerbatory antigens in murine Leishmania major infection. Infection and Immunity 73, 76207628.CrossRefGoogle Scholar
Robertson, C. D., Coombs, G. H., North, M. J. and Mottram, J. C. ( 1996). Parasite cysteine proteinases. Perspectives in Drug Discovery and Design 6, 99118.CrossRefGoogle Scholar
Robertson, I. D., Irwin, P. J., Lymbery, A. J. and Thompson, R. C. ( 2000). The role of companion animals in the emergence of parasitic zoonoses. International Journal for Parasitology 30, 13691377.CrossRefGoogle Scholar
Rodrigues, M. M., Boscardin, S. B., Vasconcelos, J. R., Hiyane, M. I., Salay, G. and Soares, I. S. ( 2003). Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. Anais da Academia Brasileira de Ciências 75, 443468.CrossRefGoogle Scholar
Rogers, K. A., DeKrey, G. K., Mbow, M. L., Gillespie, R. D., Brodskyn, C. I. and Titus, R. G. ( 2002). Type 1 and type 2 responses to Leishmania major. FEMS Microbiology Letters 209, 17.Google Scholar
Russell, D. G. and Alexander, J. ( 1988). Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. Journal of Immunology 140, 12741279.Google Scholar
Russell, D. G. and Wright, S. D. ( 1988). Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. Journal of Experimental Medicine 168, 279292.CrossRefGoogle Scholar
Russo, D. M., Burns, J. M. Jr., Carvalho, E. M., Armitage, R. J., Grabstein, K. H., Button, L. L., McMaster, W. R. and Reed, S. G. ( 1991). Human T cell responses to gp63, a surface antigen of Leishmania. Journal of Immunology 147, 35753580.Google Scholar
Ryan, K. A., Garraway, L. A., Descoteaux, A., Turco, S. J. and Beverley, S. M. ( 1993). Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proceedings of the National Academy of Sciences, USA 90, 86098613.CrossRefGoogle Scholar
Sakthianandeswaren, A., Elso, C. M., Simpson, K., Curtis, J. M., Kumar, B., Speed, T. P., Handman, E. and Foote, S. J. ( 2005). The wound repair response controls outcome to cutaneous leishmaniasis. Proceedings of the National Academy of Sciences, USA 102, 1555115556.CrossRefGoogle Scholar
Santos, W. R., Aguiar, I. A., Paraguai de Souza, E., de Lima, V. M., Palatnik, M. and Palatnik-de-Sousa, C. B. ( 2003). Immunotherapy against murine experimental visceral leishmaniasis with the FML-vaccine. Vaccine 21, 46684676.CrossRefGoogle Scholar
Saravia, N. G., Hazbon, M. H., Osorio, Y., Valderrama, L., Walker, J., Santrich, C., Cortazar, T., Lebowitz, J. H. and Travi, B. L. ( 2005). Protective immunogenicity of the paraflagellar rod protein 2 of Leishmania mexicana. Vaccine 23, 984995.CrossRefGoogle Scholar
Satti, I. N., Osman, H. Y., Daifalla, N. S., Younis, S. A., Khalil, E. A., Zijlstra, E. E., El Hassan, A. M. and Ghalib, H. W. ( 2001). Immunogenicity and safety of autoclaved Leishmania major plus BCG vaccine in healthy Sudanese volunteers. Vaccine 19, 21002106.CrossRefGoogle Scholar
Scott, P. ( 2005). Immunologic memory in cutaneous leishmaniasis. Cellular Microbiology 7, 17071713.CrossRefGoogle Scholar
Scott, P., Artis, D., Uzonna, J. and Zaph, C. ( 2004). The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development. Immunological Reviews 201, 318338.CrossRefGoogle Scholar
Seder, R. A. and Sacks, D. L. ( 2004). Memory may not need reminding. Nature Medicine 10, 10451047.CrossRefGoogle Scholar
Sharifi, I., FeKri, A. R., Aflatonian, M. R., Khamesipour, A., Nadim, A., Mousavi, M. R., Momeni, A. Z., Dowlati, Y., Godal, T., Zicker, F., Smith, P. G. and Modabber, F. ( 1998). Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351, 15401543.CrossRefGoogle Scholar
Sharples, C. E., Shaw, M. A., Castes, M., Convit, J. and Blackwell, J. M. ( 1994). Immune response in healthy volunteers vaccinated with BCG plus killed leishmanial promastigotes: antibody responses to mycobacterial and leishmanial antigens. Vaccine 12, 14021412.CrossRefGoogle Scholar
Silveira, F. T., Blackwell, J. M., Ishikawa, E. A., Braga, R., Shaw, J. J., Quinnell, R. J., Soong, L., Kima, P., McMahon-Pratt, D., Black, G. F. and Shaw, M. A. ( 1998). T cell responses to crude and defined leishmanial antigens in patients from the lower Amazon region of Brazil infected with different species of Leishmania of the subgenera Leishmania and Viannia. Parasite Immunology 20, 1926.CrossRefGoogle Scholar
Sinha, P. K., Pandey, K. and Bhattacharya, S. K. ( 2005). Diagnosis and management of leishmania/HIV co-infection. Indian Journal of Medical Research 121, 407414.Google Scholar
Sjolander, A., Baldwin, T. M., Curtis, J. M., Bengtsson, K. L. and Handman, E. ( 1998 a). Vaccination with recombinant Parasite Surface Antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine 16, 20772084.Google Scholar
Sjolander, A., Baldwin, T. M., Curtis, J. M. and Handman, E. ( 1998 b). Induction of a Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to leishmaniasis. Journal of Immunology 160, 39493957.Google Scholar
Skeiky, Y. A., Coler, R. N., Brannon, M., Stromberg, E., Greeson, K., Crane, R. T., Webb, J. R., Campos-Neto, A. and Reed, S. G. ( 2002). Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 20, 32923303.CrossRefGoogle Scholar
Skeiky, Y. A., Kennedy, M., Kaufman, D., Borges, M. M., Guderian, J. A., Scholler, J. K., Ovendale, P. J., Picha, K. S., Morrissey, P. J., Grabstein, K. H., Campos-Neto, A. and Reed, S. G. ( 1998). LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. Journal of Immunology 161, 61716179.Google Scholar
Solbach, W. and Laskay, T. ( 2000). The host response to Leishmania infection. Advances in Immunology 74, 275317.Google Scholar
Soong, L., Chang, C. H., Sun, J., Longley, B. J. Jr., Ruddle, N. H., Flavell, R. A. and McMahon-Pratt, D. ( 1997). Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. Journal of Immunology 158, 53745383.Google Scholar
Soong, L., Duboise, S. M., Kima, P. and McMahon-Pratt, D. ( 1995). Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infection and Immunity 63, 35593566.Google Scholar
Soto, J., Toledo, J., Gutierrez, P., Nicholls, R. S., Padilla, J., Engel, J., Fischer, C., Voss, A. and Berman, J. ( 2001). Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clinical Infectious Diseases 33, E5761.CrossRefGoogle Scholar
Soussi, N., Milon, G., Colle, J. H., Mougneau, E., Glaichenhaus, N. and Goossens, P. L. ( 2000). Listeria monocytogenes as a short-lived delivery system for the induction of type 1 cell-mediated immunity against the p36/LACK antigen of Leishmania major. Infection and Immunity 68, 14981506.CrossRefGoogle Scholar
Spath, G. F., Epstein, L., Leader, B., Singer, S. M., Avila, H. A., Turco, S. J. and Beverley, S. M. ( 2000). Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proceedings of the National Academy of Sciences, USA 97, 92589263.CrossRefGoogle Scholar
Spath, G. F., Lye, L. F., Segawa, H., Turco, S. J. and Beverley, S. M. ( 2004). Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Infection and Immunity 72, 36223627.CrossRefGoogle Scholar
Spitzer, N., Jardim, A., Lippert, D. and Olafson, R. W. ( 1999). Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine 17, 12981300.CrossRefGoogle Scholar
Srivastava, J. K., Misra, A., Sharma, P., Srivastava, B., Naik, S. and Dube, A. ( 2003). Prophylactic potential of autoclaved Leishmania donovani with BCG against experimental visceral leishmaniasis. Parasitology 127, 107114.CrossRefGoogle Scholar
Stager, S., Smith, D. F. and Kaye, P. M. ( 2000). Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. Journal of Immunology 165, 70647071.CrossRefGoogle Scholar
Stober, C. B., Lange, U. G., Roberts, M. T., Alcami, A. and Blackwell, J. M. ( 2005). IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. Journal of Immunology 175, 25172524.CrossRefGoogle Scholar
Streit, J. A., Recker, T. J., Donelson, J. E. and Wilson, M. E. ( 2000). BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice. Experimental Parasitology 94, 3341.CrossRefGoogle Scholar
Suffia, I., Ferrua, B., Stien, X., Mograbi, B., Marty, P., Rousseau, D., Fragaki, K. and Kubar, J. ( 2000). A novel Leishmania infantum recombinant antigen which elicits interleukin 10 production by peripheral blood mononuclear cells of patients with visceral leishmaniasis. Infection and Immunity 68, 630636.CrossRefGoogle Scholar
Sukumaran, B., Tewary, P., Saxena, S. and Madhubala, R. ( 2003). Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani. Vaccine 21, 12921299.CrossRefGoogle Scholar
Sundar, S., Jha, T. K., Thakur, C. P., Engel, J., Sindermann, H., Fischer, C., Junge, K., Bryceson, A. and Berman, J. ( 2002). Oral miltefosine for Indian visceral leishmaniasis. New England Journal of Medicine 347, 17391746.CrossRefGoogle Scholar
Symons, F. M., Murray, P. J., Ji, H., Simpson, R. J., Osborn, A. H., Cappai, R. and Handman, E. ( 1994). Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species. Molecular and Biochemical Parasitology 67, 103113.CrossRefGoogle Scholar
Tabbara, K. S., Peters, N. C., Afrin, F., Mendez, S., Bertholet, S., Belkaid, Y. and Sacks, D. L. ( 2005). Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infection and Immunity 73, 47144722.CrossRefGoogle Scholar
Tapia, E., Perez-Jimenez, E., Lopez-Fuertes, L., Gonzalo, R., Gherardi, M. M. and Esteban, M. ( 2003). The combination of DNA vectors expressing IL-12+IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes and Infection 5, 7384.CrossRefGoogle Scholar
Tesh, R. B. ( 1995). Control of zoonotic visceral leishmaniasis: is it time to change strategies? American Journal of Tropical Medicine and Hygiene 52, 287292.Google Scholar
Tewary, P., Jain, M., Sahani, M. H., Saxena, S. and Madhubala, R. ( 2005). A heterologous prime-boost vaccination regimen using ORFF DNA and recombinant ORFF protein confers protective immunity against experimental visceral leishmaniasis. Journal of Infectious Diseases 191, 21302137.CrossRefGoogle Scholar
Tewary, P., Sukumaran, B., Saxena, S. and Madhubala, R. ( 2004). Immunostimulatory oligodeoxynucleotides are potent enhancers of protective immunity in mice immunized with recombinant ORFF leishmanial antigen. Vaccine 22, 30533060.CrossRefGoogle Scholar
Titus, R. G., Gueiros-Filho, F. J., de Freitas, L. A. and Beverley, S. M. ( 1995). Development of a safe live Leishmania vaccine line by gene replacement. Proceedings of the National Academy of Sciences, USA 92, 1026710271.CrossRefGoogle Scholar
Titus, R. G. and Ribeiro, J. M. ( 1988). Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239, 13061308.CrossRefGoogle Scholar
Tonui, W. K. ( 2003). Vaccination of BALB/c mice with Leishmania donovani derived lipophosphoglycan does not conver cross-protection to L. major infections. East African Medical Journal 80, 260263.Google Scholar
Tonui, W. K., Mbati, P. A., Anjili, C. O., Orago, A. S., Turco, S. J., Githure, J. I. and Koech, D. K. ( 2001). Transmission blocking vaccine studies in leishmaniasis: I. Lipophosphoglycan is a promising transmission blocking vaccine molecule against cutaneous leishmaniasis. East African Medical Journal 78, 8489.Google Scholar
Tonui, W. K., Mejia, J. S., Hochberg, L., Mbow, M. L., Ryan, J. R., Chan, A. S., Martin, S. K. and Titus, R. G. ( 2004). Immunization with Leishmania major exogenous antigens protects susceptible BALB/c mice against challenge infection with L. major. Infection and Immunity 72, 56545661.CrossRefGoogle Scholar
Tonui, W. K., Mpoke, S. S., Orago, A. S., Turco, S. J., Mbati, P. A. and Mkoji, G. M. ( 2003). Leishmania donovani-derived lipophosphoglycan plus BCG induces a Th1 type immune response but does not protect Syrian golden hamsters (Mesocricetus auratus) and BALB/c mice against Leishmania donovani. Onderstepoort Journal of Veterinary Research 70, 255263.CrossRefGoogle Scholar
Tsagozis, P., Karagouni, E. and Dotsika, E. ( 2004). Dendritic cells pulsed with peptides of gp63 induce differential protection against experimental cutaneous leishmaniasis. International Journal of Immunopathology and Pharmacology 17, 343352.CrossRefGoogle Scholar
Uzonna, J. E., Wei, G., Yurkowski, D. and Bretscher, P. ( 2001). Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. Journal of Immunology 167, 69676974.CrossRefGoogle Scholar
Valenzuela, J. G., Belkaid, Y., Garfield, M. K., Mendez, S., Kamhawi, S., Rowton, E. D., Sacks, D. L. and Ribeiro, J. M. ( 2001). Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. Journal of Experimental Medicine 194, 331342.CrossRefGoogle Scholar
Vanloubbeeck, Y. and Jones, D. E. ( 2004). The immunology of Leishmania infection and the implications for vaccine development. Annals of New York Academy of Sciences 1026, 267272.CrossRefGoogle Scholar
Velez, I. D., Gilchrist, K., Arbelaez, M. P., Rojas, C. A., Puerta, J. A., Antunes, C. M., Zicker, F. and Modabber, F. ( 2005). Failure of a killed Leishmania amazonensis vaccine against American cutaneous leishmaniasis in Colombia. Transactions of Royal Society of Tropical Medicine and Hygiene 99, 593598.CrossRefGoogle Scholar
Veras, P., Brodskyn, C., Balestieri, F., Freitas, L., Ramos, A., Queiroz, A., Barral, A., Beverley, S. and Barral-Netto, M. ( 1999). A dhfr-ts- Leishmania major knockout mutant cross-protects against Leishmania amazonensis. Memorias do Instituto Oswaldo Cruz 94, 491496.CrossRefGoogle Scholar
von Stebut, E. and Udey, M. C. ( 2004). Requirements for Th1-dependent immunity against infection with Leishmania major. Microbes and Infection 6, 11021109.CrossRefGoogle Scholar
Waine, G. J. and McManus, D. P. ( 1995). Nucleic acids: vaccines of the future. Parasitology Today 11, 113116.CrossRefGoogle Scholar
Walker, P. S., Scharton-Kersten, T., Rowton, E. D., Hengge, U., Bouloc, A., Udey, M. C. and Vogel, J. C. ( 1998). Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Human Gene Therapy 9, 18991907.CrossRefGoogle Scholar
Webb, J. R., Campos-Neto, A., Ovendale, P. J., Martin, T. I., Stromberg, E. J., Badaro, R. and Reed, S. G. ( 1998). Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infection and Immunity 66, 32793289.Google Scholar
Webb, J. R., Campos-Neto, A., Skeiky, Y. A. and Reed, S. G. ( 1997). Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Molecular and Biochemical Parasitology 89, 179193.CrossRefGoogle Scholar
Webb, J. R., Kaufmann, D., Campos-Neto, A. and Reed, S. G. ( 1996). Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. Journal of Immunology 157, 50345041.Google Scholar
Wenyon, C. M. ( 1911). Oriental sore in Baghdad, together with observations on a gregarine in Stegomyia fasciata, the haemogregarine of dogs and flagellates of house flies. Parasitology 4, 273344.CrossRefGoogle Scholar
Wilson, M. E., Young, B. M., Andersen, K. P., Weinstock, J. V., Metwali, A., Ali, K. M. and Donelson, J. E. ( 1995). A recombinant Leishmania chagasi antigen that stimulates cellular immune responses in infected mice. Infection and Immunity 63, 20622069.Google Scholar
Wolfram, M., Ilg, T., Mottram, J. C. and Overath, P. ( 1995). Antigen presentation by Leishmania mexicana-infected macrophages: activation of helper T cells specific for amastigote cysteine proteinases requires intracellular killing of the parasites. European Journal of Immunology 25, 10941100.CrossRefGoogle Scholar
Wong, P., Lara-Tejero, M., Ploss, A., Leiner, I. and Pamer, E. G. ( 2004). Rapid development of T cell memory. Journal of Immunology 172, 72397245.CrossRefGoogle Scholar
Xu, D. and Liew, F. Y. ( 1994). Genetic vaccination against leishmaniasis. Vaccine 12, 15341536.CrossRefGoogle Scholar
Xu, D. and Liew, F. Y. ( 1995). Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology 84, 173176.Google Scholar
Xu, D., McSorley, S. J., Chatfield, S. N., Dougan, G. and Liew, F. Y. ( 1995). Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology 85, 17.Google Scholar
Yang, D. M., Fairweather, N., Button, L. L., McMaster, W. R., Kahl, L. P. and Liew, F. Y. ( 1990). Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. Journal of Immunology 145, 22812285.Google Scholar
Zadeh-Vakili, A., Taheri, T., Taslimi, Y., Doustdari, F., Salmanian, A. H. and Rafati, S. ( 2004). Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine 22, 19301940.CrossRefGoogle Scholar
Zaph, C., Uzonna, J., Beverley, S. M. and Scott, P. ( 2004). Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nature Medicine 10, 11041110.CrossRefGoogle Scholar
Zavala, F., Rodrigues, M., Rodriguez, D., Rodriguez, J. R., Nussenzweig, R. S. and Esteban, M. ( 2001). A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells. Virology 280, 155159.CrossRefGoogle Scholar
Zijlstra, E., El Hassan, A., Ismael, A. and Ghalib, H. W. ( 1994). Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 51, 826836.CrossRefGoogle Scholar