Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T23:25:54.577Z Has data issue: false hasContentIssue false

Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages

Published online by Cambridge University Press:  25 May 2016

A. R. ESCALONA-MONTAÑO
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
D. M. ORTIZ-LOZANO
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
A. ROJAS-BERNABÉ
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
A. A. WILKINS-RODRIGUEZ
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
H. TORRES-GUERRERO
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
R. MONDRAGÓN-FLORES
Affiliation:
Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México, DF, México
R. MONDRAGÓN-GONZALEZ
Affiliation:
Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México, DF, México
I. BECKER
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
L. GUTIÉRREZ-KOBEH
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
M. M. AGUIRRE-GARCIA*
Affiliation:
Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, México, DF, México
*
*Corresponding author: Facultad de Medicina, Unidad de Investigación en Medicina Experimental, UNAM, Dr. Balmis 148, Colonia Doctores, México, DF 06726, México. E-mail: [email protected]

Summary

Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu-Dayyeh, I., Hassani, K., Westra, E. R., Mottram, J. C. and Olivier, M. (2010). Comparative study of the ability of Leishmania mexicana promastigotes and amastigotes to alter macrophage signaling and functions. Infection and Immunity 78, 24382445.Google Scholar
Aguirre-Garcia, M. M., Anaya-Ruiz, M. and Talamas-Rohana, P. (2003). Membrane-bound acid phosphatase (MAP) from Entamoeba histolytica has phosphotyrosine phosphatase activity and disrupts the actin cytoskeleton of host cells. Parasitology 126, 195202.Google Scholar
Aguirre-Garcia, M. M., Escalona-Montano, A. R., Bakalara, N., Perez-Torres, A., Gutierrez-Kobeh, L. and Becker, I. (2006). Leishmania major: detection of membrane-bound protein tyrosine phosphatase. Parasitology 132, 641649.Google Scholar
Argueta-Donohue, J., Carrillo, N., Valdes-Reyes, L., Zentella, A., Aguirre-Garcia, M., Becker, I. and Gutierrez-Kobeh, L. (2008). Leishmania mexicana: participation of NF-kappaB in the differential production of IL-12 in dendritic cells and monocytes induced by lipophosphoglycan (LPG). Experimental Parasitology 120, 19.Google Scholar
Bates, P. A. and Dwyer, D. M. (1987). Biosynthesis and secretion of acid phosphatase by Leishmania donovani promastigotes. Molecular and Biochemical Parasitology 26, 289296.Google Scholar
Bates, P. A., Hermes, I. and Dwyer, D. M. (1989). Leishmania donovani: immunochemical localization and secretory mechanism of soluble acid phosphatase. Experimental Parasitology 68, 335346.Google Scholar
Berzunza-Cruz, M., Bricaire, G., Salaiza Suazo, N., Perez-Montfort, R. and Becker, I. (2009). PCR for identification of species causing American cutaneous leishmaniasis. Parasitology Research 104, 691699.CrossRefGoogle ScholarPubMed
Blanchette, J., Racette, N., Faure, R., Siminovitch, K. A. and Olivier, M. (1999). Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. European Journal of Immunology 29, 37373744.Google Scholar
Bliska, J. B., Guan, K. L., Dixon, J. E. and Falkow, S. (1991). Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proceedings of the National Academy of Sciences of the United States of America 88, 11871191.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Burns, J. M. Jr., Parsons, M., Rosman, D. E. and Reed, S. G. (1993). Molecular cloning and characterization of a 42-kDa protein phosphatase of Leishmania chagasi . The Journal of Biological Chemistry 268, 1715517161.Google Scholar
Catta-Preta, C. M., Nascimento, M. T., Garcia, M. C., Saraiva, E. M., Motta, M. C. and Meyer-Fernandes, J. R. (2013). The presence of a symbiotic bacterium in Strigomonas culicis is related to differential ecto-phosphatase activity and influences the mosquito–protozoa interaction. International Journal for Parasitology 43, 571577.Google Scholar
Chang, K. P., Reed, S. G., McGwire, B. S. and Soong, L. (2003). Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Tropica 85, 375390.Google Scholar
Cosentino-Gomes, D. and Meyer-Fernandes, J. R. (2011). Ecto-phosphatases in protozoan parasites: possible roles in nutrition, growth and ROS sensing. Journal of Bioenergetics and Biomembranes 43, 8992.Google Scholar
Cuervo, P., De Jesus, J. B., Saboia-Vahia, L., Mendonca-Lima, L., Domont, G. B. and Cupolillo, E. (2009). Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. Journal of Proteomics 73, 7992.Google Scholar
Dissing, J., Dahl, O. and Svensmark, O. (1979). Phosphonic and arsonic acids as inhibitors of human red cell acid phosphatase and their use in affinity chromatography. Biochimica et Biophysica Acta 569, 159176.CrossRefGoogle ScholarPubMed
Escalona-Montaño, A. R., Pardave-Alejandre, D., Cervantes-Sarabia, R., Garcia-Lopez, P., Gutierrez-Quiroz, M., Gutierrez-Kobeh, L., Becker-Fauser, I. and Aguirre-Garcia, M. M. (2010). Leishmania mexicana promastigotes secrete a protein tyrosine phosphatase. Parasitology Research 107, 309315.CrossRefGoogle ScholarPubMed
Fernandes, A. C., Soares, D. C., Saraiva, E. M., Meyer-Fernandes, J. R. and Souto-Padron, T. (2013). Different secreted phosphatase activities in Leishmania amazonensis . FEMS Microbiology Letters 340, 117128.CrossRefGoogle ScholarPubMed
Geiger, A., Hirtz, C., Becue, T., Bellard, E., Centeno, D., Gargani, D., Rossignol, M., Cuny, G. and Peltier, J. B. (2010). Exocytosis and protein secretion in Trypanosoma . BMC Microbiology 10, 20.Google Scholar
Gomez, M. A., Contreras, I., Halle, M., Tremblay, M. L., McMaster, R. W. and Olivier, M. (2009). Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Science Signaling 2, ra58.Google Scholar
Gomez de Leon, C. T., Diaz Martin, R. D., Mendoza Hernandez, G., Gonzalez Pozos, S., Ambrosio, J. R. and Mondragon Flores, R. (2014). Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites. Journal Proteomics 111, 8699.Google Scholar
Gour, J. K., Kumar, V., Singh, N., Bajpai, S., Pandey, H. P. and Singh, R. K. (2012). Identification of Th1-responsive leishmanial excretory–secretory antigens (LESAs). Experimental Parasitology 132, 355361.CrossRefGoogle ScholarPubMed
Green, S. P., Hartland, E. L., Robins-Browne, R. M. and Phillips, W. A. (1995). Role of YopH in the suppression of tyrosine phosphorylation and respiratory burst activity in murine macrophages infected with Yersinia enterocolitica . Journal of Leukocyte Biology 57, 972977.Google Scholar
Gregoraszczuk, E. L., Rak-Mardyla, A., Rys, J., Jakubowicz, J. and Urbanski, K. (2015). Effect of chemotherapeutic drugs on caspase-3 activity, as a key biomarker for apoptosis in ovarian tumor cell cultured as monolayer. A pilot study. Iranian Journal of Pharmaceutical Research 14, 11531161.Google ScholarPubMed
Kumar, A., Samant, M., Misra, P., Khare, P., Sundar, S., Garg, R. and Dube, A. (2015). Immunostimulatory potential and proteome profiling of Leishmania donovani soluble exogenous antigens. Parasite Immunology 37, 368375.Google Scholar
Markikou-Ouni, W., Drini, S., Bahi-Jaber, N., Chenik, M. and Meddeb-Garnaoui, A. (2015). Immunomodulatory effects of four Leishmania infantum potentially excreted/secreted proteins on human dendritic cells differentiation and maturation. PLoS ONE 10, e0143063.Google Scholar
McConville, M. J. and Blackwell, J. M. (1991). Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. Journal of Biological Chemistry 266, 1517015179.Google Scholar
McConville, M. J., Mullin, K. A., Ilgoutz, S. C. and Teasdale, R. D. (2002). Secretory pathway of trypanosomatid parasites. Microbiology and Molecular Biology Reviews 66, 122154; table of contents.Google Scholar
Mitula, F., Tajdel, M., Ciesla, A., Kasprowicz-Maluski, A., Kulik, A., Babula-Skowronska, D., Michalak, M., Dobrowolska, G., Sadowski, J. and Ludwikow, A. (2015). Arabidopsis ABA-activated kinase MAPKKK18 is regulated by protein phosphatase 2C ABI1 and the ubiquitin–proteasome pathway. Plant & Cell Physiology 56, 23512367.Google Scholar
Neves, R. F., Fernandes, A. C., Meyer-Fernandes, J. R. and Souto-Padron, T. (2014). Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitology Research 113, 29612972.Google Scholar
Rohousova, I., Volf, P. and Lipoldova, M. (2005). Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunology 27, 469473.Google Scholar
Rojas-Bernabe, A., Garcia-Hernandez, O., Maldonado-Bernal, C., Delegado-Dominguez, J., Ortega, E., Gutierrez-Kobeh, L., Becker, I. and Aguirre-Garcia, M. (2014). Leishmania mexicana lipophosphoglycan activates ERK and p38 MAP kinase and induces production of proinflammatory cytokines in human macrophages through TLR2 and TLR4. Parasitology 141, 788800.Google Scholar
Ruffolo, J. J., Cushion, M. T. and Walzer, P. D. (1986). Techniques for examining Pneumocystis carinii in fresh specimens. Journal of Clinical Microbiology 23, 1721.CrossRefGoogle ScholarPubMed
Santarem, N., Silvestre, R., Tavares, J., Silva, M., Cabral, S., Maciel, J. and Cordeiro-da-Silva, A. (2007). Immune response regulation by leishmania secreted and nonsecreted antigens. Journal of Biomedicine & Biotechnology 2007, 85154.Google Scholar
Shibata, K., Noda, M., Sawa, Y. and Watanabe, T. (1994). Acid phosphatase purified from Mycoplasma fermentans has protein tyrosine phosphatase-like activity. Infection and Immunity 62, 313315.Google Scholar
Silverman, J. M., Chan, S. K., Robinson, D. P., Dwyer, D. M., Nandan, D., Foster, L. J. and Reiner, N. E. (2008). Proteomic analysis of the secretome of Leishmania donovani . Genome Biology 9, R35.Google Scholar
Silverman, J. M., Clos, J., de'Oliveira, C. C., Shirvani, O., Fang, Y., Wang, C., Foster, L. J. and Reiner, N. E. (2010). An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. Journal of Cell Science 123, 842852.Google Scholar
Singh, A., Pandey, A., Srivastava, A. K., Tran, L. P. and Pandey, G. K. (2015). Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology 18, 113.Google Scholar
Singla, N., Khuller, G. K. and Vinayak, V. K. (1992). Acid phosphatase activity of promastigotes of Leishmania donovani: a marker of virulence. FEMS Microbiology Letters 73, 221225.Google Scholar
Solbach, W. and Laskay, T. (2000). The host response to Leishmania infection. Advances in Immunology 74, 275317.Google Scholar
Tabatabaee, P. A., Abolhassani, M., Mahdavi, M., Nahrevanian, H. and Azadmanesh, K. (2011). Leishmania major: secreted antigens of Leishmania major promastigotes shift the immune response of the C57BL/6 mice toward Th2 in vitro . Experimental Parasitology 127, 4651.Google Scholar
Trocoli Torrecilhas, A. C., Tonelli, R. R., Pavanelli, W. R., da Silva, J. S., Schumacher, R. I., de Souza, W., NC, E. S., de Almeida Abrahamsohn, I., Colli, W. and Manso Alves, M. J. (2009). Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes and Infection 11, 2939.Google Scholar
Vannier-Santos, M. A., Martiny, A., Meyer-Fernandes, J. R. and de Souza, W. (1995). Leishmanial protein kinase C modulates host cell infection via secreted acid phosphatase. European Journal of Cell Biology 67, 112119.Google Scholar
Wilkins-Rodriguez, A. A., Escalona-Montano, A. R., Aguirre-Garcia, M., Becker, I. and Gutierrez-Kobeh, L. (2010). Regulation of the expression of nitric oxide synthase by Leishmania mexicana amastigotes in murine dendritic cells. Experimental Parasitology 126, 426434.Google Scholar