Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T19:41:06.714Z Has data issue: false hasContentIssue false

Inflammatory responses to parasites

Published online by Cambridge University Press:  23 August 2011

C. D. Mackenzie
Affiliation:
Wolfson Tropical Pathology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
A. J. Gatrill
Affiliation:
Wolfson Tropical Pathology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
A. J. Luty
Affiliation:
Wolfson Tropical Pathology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
D. G. Manyasi
Affiliation:
Wolfson Tropical Pathology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
C. Moore
Affiliation:
Wolfson Tropical Pathology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
G. Sayers
Affiliation:
Wolfson Tropical Pathology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
S. Sulaiman
Affiliation:
Medical Research Laboratories, Khartoum, Sudan

Extract

The patients we are concerned about in tropical medicine are unfortunately affected by a wide range of conditions, not only those seen and studied extensively in the West, such as cancer, cardiovascular diseases and viral or bacterial infections, but also the major protozoan and metazoan conditions – the parasitic diseases. It is with this spectrum of pathophysiological changes that occurs in this last group that we are presently concerned and this communication is intended to present an overview of the subject.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerman, S. J., Weil, G. J. & Gleich, G. J. (1982). Formation of Charcot-Leyden crystals by human basophils. Journal of Experimental Medicine 155, 1597–609.CrossRefGoogle ScholarPubMed
Ayres, W. W. & Starkey, N. M. (1950). Studies on Charcot-Leyden crystals. Blood 5, 254–69.CrossRefGoogle ScholarPubMed
Beaver, P. C. (1962). Observations on the nature of Charcot-Leyden crystals. Bulletin de la Société de Pathologie Exotique 55, 471–6.Google ScholarPubMed
Boros, D. L. (1978). Granulomatous inflammation. Progress in Allergy 24, 183267.Google Scholar
Brown, S. J. & Askenase, P. W. (1983). Immune rejection of ectoparasites (ticks) by T cell and IgG, antibody recruitment of basophils and eosinophils. Federation Proceedings 42, 1744–9.Google Scholar
Butterworth, A. E., Sturrock, R. F., Houba, V., Mahmoud, A. A., Sher, A. & Rees, P. H. (1975). Eosinophils as mediators of antibody dependent damage to schistosomula. Nature, London 256, 727–9.CrossRefGoogle ScholarPubMed
Charcot, J. M. & Robin, C. (1853). Observation de leucocythemie. Mémoires lus à la Société de Biologie 5, 44.Google Scholar
El-Hashim, W. (1971). Charcot-Leyden crystals: Formation from primate and lack of formation from non primate eosinophils. American Journal of Pathology 65, 311–24.Google Scholar
Fine, E., Aikawa, M., Cochrane, A. H. & Nussenzweig, R. S. (1984). Immuno-electron microscopic observations on Plasmodium knowlesi sporocytes. Localization of protective antigen and its precursors. American Journal of Tropical Medicine and Hygiene 33, 220–6.CrossRefGoogle Scholar
Gleich, G. J. & Loegering, D. A. (1984). Immunobiology of eosinophils. Annual Review of Immunology 2, 429–59.CrossRefGoogle ScholarPubMed
Georgsson, G. & Wesell, W. (1967). Elektronenmikroskopische und enzymatisch analytische Untersuchung eines eosinophilen Granuloms. Virchows Archiv für pathologische Anatomie und Physiologie 343, 176188.Google Scholar
Guy Gand, D., Dy, M., Luffa, G. & Vassalli, P. (1984). Gut mucosal mast cells. Origin, traffic and differentiation. Journal of Experimental Medicine 160, 1228.CrossRefGoogle Scholar
Hawking, F. & Gammage, K. (1968). The action of serotonin (5-hydroxytryptamine) in vivo upon the microfilariae of Dirofilaria, Loa and five other species. Parasitology 58, 393402.CrossRefGoogle ScholarPubMed
Heyderman, E. (1983). Tumour markers. In Immunocytochemistry: Practical Applications in Pathology and Biology (ed. Polak, J. M. and Noorden, S. Van), pp. 274294. Bristol-London-Boston: Wright PSG.CrossRefGoogle Scholar
Kephart, G. M., Gleich, G. J., Connor, D. H., Gibson, D. W. & Ackerman, S. J. (1984). Deposition of eosinophil granule major basic protein onto microfilariae of Onchocerca volvulus in the skin of patients treated with diethylcarbamazine. Laboratory Investigations 50, 5161.Google ScholarPubMed
Leyden, E. (1872). Zur Kenntnis des bronchial Asthma. Virchows Archiv für pathologische Anatomie und Physiologie 54, 324–53.CrossRefGoogle Scholar
Mccartney, A. & Spry, C. J. F. (1986). Immunology of vascular endothelial cells. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 178–80.Google Scholar
Mackenzie, C. D. (1980). Eosinophil leucocytes in filarial infections. Transactions of the Royal Society of Tropical Medicine and Hygiene. 74 Suppl. 51–8.CrossRefGoogle Scholar
Mackenzie, C. D. (1984). Sequestration: a parasite avoidance mechanism. Parasitology 88, 593–5.CrossRefGoogle Scholar
Mackenzie, C. D. (1986). Pathology in tropical medicine. Parasitology Today 2, 261–3.CrossRefGoogle ScholarPubMed
Mackenzie, C. D. & Kron, M. A. (1985b). Diethylcarbamazine: A review of its action in onchocerciasis, lymphatic filariasis and inflammation. Tropical Diseases Bulletin 82, R1–R37.Google Scholar
Mackenzie, C. D., Williams, J. F., Sisley, B. M., Steward, M. W. & O'day, J. (1985a). Variations in host responses and the pathogenesis of human onchocerciasis. Reviews of Infectious Diseases 1, 802–8.CrossRefGoogle Scholar
Macpherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. (1985). Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erthrocyte sequestration. American Journal of Pathology 119, 385401.Google Scholar
Miller, H. R. (1984). The protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Veterinary Immunology and Immunopathology 6, 167259.CrossRefGoogle ScholarPubMed
Oxenham, S. L., Mackenzie, C. D. & Denham, D. A. (1984). Increased killing of Brugia pahangi microfilariae by macrophages from infected mice. Parasite Immunology 6, 141–56.CrossRefGoogle Scholar
Phillips, S. M. & Colley, D. C. (1978). Immunologic aspects of host response to schistosomiasis: Resistance, immunopathology and eosinophil involvement. Progress in Allergy 24, 49182.Google ScholarPubMed
Piesseins, W. F. & Mackenzie, C. D. (1982). Immunology of lymphatic filariasis and onchocerciasis. In Immunology of Parasitic Infections 2nd Edn (ed. Cohen, S. and Warren, K. S.) pp. 622653. Oxford: Black well.Google Scholar
Polak, J. M. & Bloom, S. R. (1983). Immunocytochemistry of regulatory peptides. In Immunocytochemistry: Practical Applications in Pathology and Biology (ed. Polak, J. M. and Noorden, S. Van), pp. 184211. Bristol-London-Boston: Wright PSG.CrossRefGoogle Scholar
Spry, C. F. J. & Tai, C. P. (1976). Studies on blood eosinophils II. Patients with Loffler's cardiomyopathy. Clinical and Experimental Immunology 24, 423–4.Google ScholarPubMed
Wakelin, D. (1984). Intracellular protozoa. In Immunity to Parasites: How Animals Control Parasite Infections (ed. Wakelin, D.), pp. 3257. London: Arnold.Google Scholar
Warren, K. S. (1982). Mechanisms of immunopathology in parasitic infections. In Immunology of Parasitic Infections 2nd Edn (ed. Cohen, S. & Warren, K. S.), pp. 116137. Oxford: Blackwell.Google Scholar
Weller, P. F., Bach, D. S. & Austen, K. F. (1984). Biochemical characterisation of human Charcot-Leyden crystal protein (Lysophospholipase). Journal of Biological Chemistry 259, 15100–5.CrossRefGoogle ScholarPubMed
Welsh, R. A. (1959). The genesis of the Charcot-Leyden crystal in the eosinophilic leukocyte of man. American Journal of Pathology 35, 1091–103.Google ScholarPubMed
Woodbury, R. G., Miller, H. R. P., Huntley, J. F., Newlands, G. F. J., Palliser, A. C. & Wakelin, D. (1984). Muscosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rats. Nature, London 312, 450–2.CrossRefGoogle Scholar