Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T20:45:56.191Z Has data issue: false hasContentIssue false

Gamete development in malaria parasites: bicarbonate-dependent stimulation by pH in vitro

Published online by Cambridge University Press:  06 April 2009

Mary M. Nijhout
Affiliation:
Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, Maryland 20014
Richard Carter
Affiliation:
Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, Maryland 20014

Summary

Gametogenesis in Plasmodium gallinaceum involves bicarbonate-dependent processes and requires a continuous supply of glucose (presumably as an energy source). Emergence and exflagellation of gametocytes, in vitro, occur independently of the CO2 tension but are rigidly correlated with the pH of the external medium. In bicarbonate-saline gametogenesis is initiated only if the pH exceeds 7·7. Our results suggest that gamete development of malaria parasites is stimulated when infected blood is exposed to air because the decrease in the CO2 tension of the blood causes its pH to rise.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bishop, A. & McConnachie, E. W. (1956). A study of the factors affecting the emergence of the gametocytes of Plasmodium gallinaceum from the erythrocytes and the exflagellation of the male gametocytes. Parasitology 46, 192215.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1960). Further observations on the in vitro development of the gametocytes of Plasmodium gallinaceum. Parasitology 50, 431–48.CrossRefGoogle Scholar
Carter, R. & Nijhout, M. M. (1977). Control of gamete formation (exflagellation) in malaria parasites. Science 195, 407–9.CrossRefGoogle ScholarPubMed
Christophers, R. (1963). Aedes aegypti (L.), the Yellow Fever Mosquito. London: Cambridge University Press.Google Scholar
Desser, S. S., Fallis, A. M. & Allison, F. R. (1976). Nuclear changes preceding microgamete formation in Leucocytozoon simondi and Leucocytozoon tawaki. Canadian Journal of Zoology 54, 799801.CrossRefGoogle ScholarPubMed
Dvorak, J. A. & Stotler, W. F. (1971). A controlled-environment culture system for high resolution light microscopy. Experimental Cell Research 68, 144–8.CrossRefGoogle ScholarPubMed
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific Publications.Google Scholar
MacCallum, W. G. (1897). On the flagellated form of the malarial parasite. Lancet 11, 1240–1.CrossRefGoogle Scholar
Marcheaux, E. & Chorine, V. (1932). Lafécondation des gametes d'haematozoaires. Annales de l'Institut Pasteur 49, 75102.Google Scholar
Micks, D. W., de Caires, P. F. & Franco, L. B. (1948). The relationship of exflagellation in avian plasmodia to pH and immunity in the mosquito. American Journal of Hygiene 48, 182–90.Google ScholarPubMed
Roller, N. R. & Desser, S. S. (1973). The effect of temperature, age and density of gametocytes, and changes in gas composition on exflagellation of Leucocytozoon simondi. Canadian Journal of Zoology 51, 577–87.CrossRefGoogle ScholarPubMed
Sigaard-Anderson, O. (1964). The Acid Base Status of the Blood. Baltimore: Williams and Williams.Google Scholar
Sturkie, P. D. (1965). Avian Physiology. Ithaca: Cornell University Press.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1964). Manometric Techniques. Minneapolis: Burgess Publishing Company.Google Scholar
Wigglesworth, V. B. (1974). The Principles of Insect Physiology. London: Chapman and Hall.CrossRefGoogle Scholar