Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T12:51:24.412Z Has data issue: false hasContentIssue false

The first case of microsporidiosis in Paramecium

Published online by Cambridge University Press:  27 April 2020

Yulia Yakovleva
Affiliation:
Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
Elena Nassonova
Affiliation:
Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, 194064Saint Petersburg, Russian Federation Department of Invertebrate Zoology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
Natalia Lebedeva
Affiliation:
Core Facility Center for Cultivation of Microorganisms, Saint Petersburg State University, Peterhof, Botanicheskaya st. 17, 198504Saint Petersburg, Russian Federation
Olivia Lanzoni
Affiliation:
Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
Giulio Petroni
Affiliation:
Department of Biology, University of Pisa, via A Volta 4, 56126Pisa, Italy
Alexey Potekhin
Affiliation:
Department of Microbiology, Saint Petersburg State University, 16th line, Vasilyevsky Island, 29, 199178Saint Petersburg, Russian Federation
Elena Sabaneyeva*
Affiliation:
Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russian Federation
*
Author for correspondence: Elena Sabaneyeva, E-mail: [email protected]

Abstract

A new microsporidian species, Globosporidium paramecii gen. nov., sp. nov., from Paramecium primaurelia is described on the basis of morphology, fine structure, and SSU rRNA gene sequence. This is the first case of microsporidiosis in Paramecium reported so far. All observed stages of the life cycle are monokaryotic. The parasites develop in the cytoplasm, at least some part of the population in endoplasmic reticulum and its derivates. Meronts divide by binary fission. Sporogonial plasmodium divides by rosette-like budding. Early sporoblasts demonstrate a well-developed exospore forming blister-like structures. Spores with distinctive spherical shape are dimorphic in size (3.7 ± 0.2 and 1.9 ± 0.2 μm). Both types of spores are characterized by a thin endospore, a short isofilar polar tube making one incomplete coil, a bipartite polaroplast, and a large posterior vacuole. Experimental infection was successful for 5 of 10 tested strains of the Paramecium aurelia species complex. All susceptible strains belong to closely related P. primaurelia and P. pentaurelia species. Phylogenetic analysis placed the new species in the Clade 4 of Microsporidia and revealed its close relationship to Euplotespora binucleata (a microsporidium from the ciliate Euplotes woodruffi), to Helmichia lacustris and Mrazekia macrocyclopis, microsporidia from aquatic invertebrates.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aufderheide, KJ, Daggett, P-M and Nerad, TA (1983) Paramecium sonneborni n. sp., a new member of the Paramecium aurelia species-complex. The Journal of Protozoology 30, 128131.CrossRefGoogle Scholar
Bass, D, Czech, L, Williams, BA, Berney, C, Dunthorn, M, Mahé, F, Torruella, G, Stentiford, GD and Williams, TA (2018) Clarifying the relationships between Microsporidia and Cryptomycota. Journal of Eukaryotic Microbiology 65, 773782.CrossRefGoogle ScholarPubMed
Cali, A and El Garhy, M (1991) Ultrastructural study of the development of Pleistophora schubergi Zwölfer (Protozoa, Microsporidia) in larvae of the spruce budworm, Choristoneura fumiferane and its subsequent taxonomic change to the genus Endoreticulatus. The Journal of Protozoology 38, 271278.CrossRefGoogle Scholar
Calvo-Garrido, J, Carilla-Latorre, S, Kubohara, Y, Santos-Rodrigo, N, Mesquita, A, Soldati, T, Golstein, P and Escalante, R (2010) Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 6, 686701.CrossRefGoogle ScholarPubMed
Castelli, M, Serra, V, Senra, MVX, Basuri, CK, Soares, CAG, Fokin, SI, Modeo, L and Petroni, G (2019) The hidden world of Rickettsiales symbionts: “Candidatus Spectririckettsia obscura”, a novel bacterium found in Brazilian and Indian Paramecium caudatum. Microbial Ecology 77, 748758.CrossRefGoogle Scholar
Catania, F, Wurmser, F, Potekhin, AA, Przybos, E and Lynch, M (2009) Genetic diversity in the Paramecium aurelia species complex. Molecular Biology and Evolution 26, 421431.CrossRefGoogle ScholarPubMed
Corsaro, D, Walochnik, J, Venditti, D, Müller, K-D, Hauröder, B and Michel, R (2014a) Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitology Research 113, 44914498.CrossRefGoogle Scholar
Corsaro, D, Walochnik, J, Venditti, D, Steinmann, J, Müller, K-D and Michel, R (2014b) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitology Research 113, 19091918.CrossRefGoogle Scholar
Corsaro, D, Michel, R, Walochnik, J, Venditti, D, Müller, K-D, Hauröder, B and Wylezich, C (2016) Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitology Research 115, 30033011.CrossRefGoogle Scholar
Didier, ES and Weiss, LM (2006) Microsporidiosis: current status. Current Opinion in Infectious Diseases 19, 485492.CrossRefGoogle ScholarPubMed
Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.CrossRefGoogle ScholarPubMed
Foissner, I and Foissner, W (1995) Ciliatosporidium platyophryae nov. gen., nov. spec. (Microspora incerta sedis), a parasite of Platyophrya terricola (Ciliophora, Colpodea). European Journal of Protistology 31, 248259.CrossRefGoogle Scholar
Fokin, SI (2004) Bacterial endocytobionts of Ciliophora and their interactions with the host cell. International Review of Cytology 236, 181249. doi: 10.1016/S0074-7696(04)36005-5CrossRefGoogle ScholarPubMed
Fokin, SI (2010) Paramecium genus: biodiversity, some morphological features and the key to the main morphospecies discrimination. Protistology 6, 227235.Google Scholar
Fokin, SI (2012) Frequency and biodiversity of symbionts in representatives of the main classes of Ciliophora. European Journal of Protistology 48, 138148.CrossRefGoogle ScholarPubMed
Fokin, SI, Di Giuseppe, G, Erra, F and Dini, F (2008) Euplotespora binucleata n. gen., n. sp. (Protozoa: Microsporidia), a parasite infecting the hypotrichous Ciliate Euplotes woodruffi, with observations on microsporidian infections in Ciliophora. Journal of Eukaryotic Microbiology 55, 214228.CrossRefGoogle Scholar
Fokin, SI, Serra, V, Ferrantini, F, Modeo, L and Petroni, G (2019) Candidatus Hafkinia simulans” gen. nov., sp. nov., a novel Holospora-like bacterium from the macronucleus of the rare brackish water ciliate Frontonia salmastra (Oligohymenophorea, Ciliophora): multidisciplinary characterization of the new endosymbiont and its host. Microbial Ecology 77, 10921106.CrossRefGoogle ScholarPubMed
Friedrich, N, Hagedorn, M, Soldati-Favre, D and Soldati, T (2012) Prison break: pathogens’ strategies to egress from host cells. Microbiology and Molecular Biology 76, 707720.CrossRefGoogle ScholarPubMed
Galindo, LJ, Torruella, G, Moreira, D, Timpano, H, Paskerova, G, Smirnov, A, Nassonova, E and López-García, P (2018) Evolutionary genomics of Metchnikovella incurvata (Metchnikovellidae): an early branching microsporidium. Genome Biology and Evolution 10, 27362748.CrossRefGoogle ScholarPubMed
Gerstenmaier, L, Pilla, R, Herrmann, L, Herrmann, H, Prado, M, Villafano, GJ, Kolonko, M, Reimer, R, Soldati, T, King, JS and Hagedorn, M (2015) The autophagic machinery ensures nonlytic transmission of mycobacteria. Proceedings of the National Academy of Sciences 112, E687E692.CrossRefGoogle ScholarPubMed
Gordetskaya, O, Mesentsev, Y, Kamyshatskaya, O, Michel, R, Walochnik, J, Smirnov, AV and Nassonova, ES (2019) Real-time observations on the development of intra-nuclear parasite Nucleophaga amoebae (Rozellomycota) in the culture of Thecamoeba quadrilineata. Protistology 13, 236245.Google Scholar
Görtz, H-D (1987) Infections of Stentor roesli and S. polymorfus (Ciliophora, Heterotrichisa) by microsporidia. Parasitology Research 74, 3435.CrossRefGoogle Scholar
Görtz, H-D (2010) Microbial infections in free-living protozoa. Critical Reviews in Immunology 30, 95106.CrossRefGoogle Scholar
Görtz, H-D and Fokin, SI (2009) Diversity of endosimbiotic bacteria in paramecium. In Fujishima, M (ed.), Endosymbionts in Paramecium. Berlin, Heidelberg: Springer, pp. 131160. doi: 10.1007/978-3-540-92677-1_6.CrossRefGoogle Scholar
Gouy, M, Guindon, S and Gascuel, O (2010) Seaview Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221224.CrossRefGoogle ScholarPubMed
Han, B and Weiss, LM (2017) Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiology Spectrum 5, 97113. doi: 10.1128/microbiolspec.FUNK-0018-2016Google ScholarPubMed
Hovasse, R (1950) Spirobutschliella chattoni, nov. gen., sp., Cilié Astome, parasite en Méditerranée du Serpulien Potamoceros triqueter L., et parasité par la Microsporidie Gurleya nova, sp. nov, Bulletin de l'Institut océanographique, 962, pp. 110.Google Scholar
Issi, IV, Kadyrova, MK, Pushkar, EN, Khodzhaeva, LF and Krylova, SV (1990) Microsporidia in blackflies – determination and short description of species of microsporidia of the world fauna. Publishing house “FAN” of the Uzbecks Soviet Socialist Republics, Tashkent, U.S.S.R. 124 (in Russian).Google Scholar
Issi, IV, Tokarev, YS, Voronin, VN, Seliverstova, EV, Pavlova, OA and Dolgikh, VV (2010) Ultrastructure and molecular phylogeny of Mrazekia macrocyclopis sp.n. (Microsporidia, Mrazekiidae), a microsporidian parasite of Macrocyclops albidus (Jur.) (Crustacea, Copepoda). Acta Protozoologica 49, 7584.Google Scholar
Karpov, S, Mamkaeva, M, Aleoshin, V, Nassonova, E, Lilje, O and Gleason, F (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Frontiers in Microbiology 5, 112.CrossRefGoogle ScholarPubMed
Keeling, PJ (2014) Phylogenetic place of Microsporidia in the tree of eukaryotes. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. Hoboken, New Jersey: John Wiley and Sons, Inc., pp. 19202. doi: 10.1002/9781118395264.ch5.Google Scholar
Keeling, PJ, Fast, NM and Corradi, N (2014) Microsporidian genome structure and function. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. Hoboken, New Jersey: John Wiley and Sons, Inc., pp. 221229. doi: 10.1002/9781118395264.ch7.Google Scholar
Kodama, Y and Fujishima, M (2010) Secondary symbiosis between Paramecium and Chlorella cells. International Review of Cell and Molecular Biology 279, 3377.CrossRefGoogle ScholarPubMed
Krüger, F (1956) Über die Microsporidien-Infektion von Campanella umbellaria (Ciliata, Peritricha). Zoologischer Anzeiger 156, 125129.Google Scholar
Kyei-Poku, G, Gauthier, D, Schwarz, R and van Frankenhuyzen, K (2011) Morphology, molecular characteristics and prevalence of a Cystosporogenes species (Microsporidia) isolated from Agrilus anxius (Coleoptera: Buprestidae). Journal of Invertebrate Pathology 107, 110.CrossRefGoogle Scholar
Lanzoni, O, Fokin, SI, Lebedeva, N, Migunova, A, Petroni, G and Potekhin, A (2016) Rare freshwater ciliate Paramecium Chlorelligerum (Kahl, 1935) and its macronuclear symbiotic bacterium “Candidatus Holospora parva. PLOS ONE 11, e0167928.CrossRefGoogle ScholarPubMed
Lanzoni, O, Sabaneyeva, E, Modeo, L, Castelli, M, Lebedeva, N, Verni, F, Schrallhammer, M, Potekhin, A and Petroni, G (2019) Diversity and environmental distribution of the cosmopolitan endosymbiont “Candidatus Megaira”. Scientific Reports 9, 1179.CrossRefGoogle ScholarPubMed
Larsson, JIR (2014) The primitive microsporidia. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. Hoboken, New Jersey: John Wiley and Sons, Inc., pp. 605634. doi.org/10.1002/9781118395264.ch24.Google Scholar
Larsson, JIR, Ebert, D, Vávra, J and Voronin, VN (1996) Redescriptjon of Pleistophora intestinalis Chatton, 1907, a microsporidian parasite of Daphnia magna and Daphnia puiex, with establishment of the new genus Glugoides (Microspora, Glugeidae). European Journal of Protistology 32, 251261.CrossRefGoogle Scholar
Lom, J and Nilsen, F (2003) Fish microsporidia: fine structural diversity and phylogeny. International Journal for Parasitology 33, 107127.CrossRefGoogle ScholarPubMed
Lutz, A and Splendor, A (1908) Überpebrine und verwandte Microsporidien. Zweite Mitteilung Centralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig 46, 311315.Google Scholar
Martinez, MA, Vivarès, CP, Rocha, RD, Fonseca, AC, Andral, B and Bouix, G (1992) Microsporidiosis on Artemia (Crustacea, Anostraca): light and electron microscopy of Vavraia anostraca sp. nov. (Microsporidia, Pleistophoridae) in the Brazilian solar salterns. Aquaculture 107, 229237.CrossRefGoogle Scholar
Michel, R, Schmid, EN, Böker, T, Hager, DG, Müller, K-D, Hoffmann, R and Seitz, HM (2000) Vannella sp. harboring Microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitology Research 86, 514520.CrossRefGoogle ScholarPubMed
Michel, R, Hauröder, B and Zöller, L (2009 a) Isolation of Thecamoeba quadrilineata harboring intranuclear sporeforming endoparasites considered to be fungal organisms. Acta Protozoologica 48, 149.Google Scholar
Michel, R, Müller, KD and Hauröder, B (2009 b) A novel microsporidian endoparasite replicating within the nucleus of Saccamoeba limax isolated from a pond. Endocytobiosis and Cell Research 19, 120126.Google Scholar
Michel, R, Muller, K-D, Schmid, EN, Theegarten, D, Hauroder, B and Corsaro, D (2012) Isolation of Thecamoeba terricola from bark of Platanus occidentalis harbouring spore-forming eukaryotic endoparasites with intranuclear development. Endocytobiosis and Cell Research 22, 3742.Google Scholar
Mikhailov, KV, Simdyanov, TG and Aleoshin, VV (2017) Genomic survey of a hyperparasitic microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biology and Evolution 9, 454467.Google Scholar
Miller, C and Celli, J (2016) Avoidance and subversion of eukaryotic homeostatic autophagy mechanisms by bacterial pathogens. Journal of Molecular Biology 428, 33873398.CrossRefGoogle ScholarPubMed
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees, in: 2010 Gateway Computing Environments Workshop (GCE). Presented at the 2010 Gateway Computing Environments Workshop (GCE), IEEE, New Orleans, LA, USA 1–8. doi: 10.1109/GCE.2010.5676129.CrossRefGoogle Scholar
Nowack, ECM and Melkonian, M (2010) Endosymbiotic associations within protists. Philosophical Transactions of the Royal Society B 365, 699712.CrossRefGoogle ScholarPubMed
Quandt, CA, Beaudet, D, Corsaro, D, Walochnik, J, Michel, R, Corradi, N and James, TY (2017) The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. eLife 6, e29594.CrossRefGoogle ScholarPubMed
Rode, NO, Landes, J, Lievens, EJP, Flaven, E, Segard, A, Jabbour-Zahab, R, Michalakis, Y, Agnew, P, Vivarès, CP and Lenormand, T (2013) Cytological, molecular and life cycle characterization of Anostracospora rigaudi n. g., n. sp. and Enterocytospora artemiae n. g., n. sp., two new microsporidian parasites infecting gut tissues of the brine shrimp Artemia. Parasitology 140, 11681185.CrossRefGoogle Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, J-Y, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P and Cardona, A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676.CrossRefGoogle ScholarPubMed
Schweikert, M, Fujishima, M and Görtz, H-D (2013) Symbiotic associations between ciliates and prokaryotes. In Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E and Thompson, F (eds), The Prokaryotes. Berlin: Springer, pp. 427463. doi: 10.1007/978-3-642-30194-0_18.CrossRefGoogle Scholar
Silveira, H and Canning, EU (1995) Vittaforma corneae N. Comb. for the human microsporidium Nosema corneum Shadduck, Meccoli, Davis & Font, 1990, based on its ultrastructure in the liver of experimentally infected athymic mice. Journal of Eukaryotic Microbiology 42, 158165.CrossRefGoogle ScholarPubMed
Skovorodkin, IN (1990) A device for immobilizing small biological objects under light optical study. Tsitologiia 32, 301302.Google ScholarPubMed
Sokolova, YY, Paskerova, GG, Rotari, YM, Nassonova, ES and Smirnov, AV (2013) Fine structure of Metchnikovella incurvata Caullery and Mesnil 1914 (Microsporidia), a hyperparasite of gregarines Polyrhabdina sp. From the polychaete Pygospio elegans. Parasitology 140, 855867.CrossRefGoogle Scholar
Sokolova, YY, Paskerova, GG, Rotari, YM, Nassonova, ES and Smirnov, AV (2014) Description of Metchnikovella spiralis sp. n. (Microsporidia: Metchnikovellidae), with notes on the ultrastructure of metchnikovellids. Parasitology 141, 11081122.CrossRefGoogle Scholar
Sonneborn, TM (1974) Paramecium aurelia. In King, RC (ed.), Handbook of Genetics. vol. 2. New York: Plenum Press, pp. 469594.CrossRefGoogle Scholar
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30, 13121313.CrossRefGoogle ScholarPubMed
Stentiford, GD and Dunn, AM (2014) Microsporidia in aquatic invertebrates. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. Hoboken, New Jersey: John Wiley and Sons, Inc., pp. 579604. doi: 10.1002/9781118395264.ch23.Google Scholar
Stentiford, GD, Becnel, JJ, Weiss, LM, Keeling, PJ, Didier, ES, Williams, BAP, Bjornson, S, Kent, ML, Freeman, MA, Brown, MJF, Troemel, ER, Roesel, K, Sokolova, Y, Snowden, KF and Solter, L (2016) Microsporidia – emergent pathogens in the global food chain. Trends in Parasitology 32, 336348.CrossRefGoogle ScholarPubMed
Stentiford, GD, Ramilo, A, Abollo, E, Kerr, R, Bateman, KS, Feist, SW, Bass, D and Villalba, A (2017) Hyperspora aquatica n.gn., n.sp. (Microsporidia), hyperparasitic in Marteilia cochillia (Paramyxida), is closely related to crustacean-infecting microspordian taxa. Parasitology 144, 186199.CrossRefGoogle Scholar
Strüder-Kypke, MC and Lynn, DH (2010) Comparative analysis of the mitochondrial cytochrome c Oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Systematics and Biodiversity 8, 131148.CrossRefGoogle Scholar
Szokoli, F, Sabaneyeva, E, Castelli, M, Krenek, S, Schrallhammer, M, Soares, CAG, da Silva-Neto, ID, Berendonk, TU and Petroni, G (2016) Candidatus Fokinia solitaria”, a novel “stand-alone” symbiotic lineage of Midichloriaceae (Rickettsiales). PLoS ONE 11, e0145743.CrossRefGoogle Scholar
Szumowski, SC, Botts, MR, Popovich, JJ, Smelkinson, MG and Troemel, ER (2014) The small GTPase RAB-11 directs polarized exocytosis of the intracellular pathogen N. parisii for fecal-oral transmission from C. elegans. Proceedings of the National Academy of Sciences 111, 82158220.CrossRefGoogle ScholarPubMed
Tokarev, YS, Voronin, VN, Seliverstova, EV, Grushetskaya, TA and Issi, IV (2012) Ultrastructure and molecular phylogenetics of Helmichia lacustris, a microsporidium with an uncoiled isofilar polar filament. Parasitology Research 110, 12011208.CrossRefGoogle ScholarPubMed
Vávra, J (1959) Beitrag zur Cytologie einiger Mikrosporidien. Věstník Československé zoologické společnosti 23, 347350.Google Scholar
Vávra, J and Larsson, JIR (2014) Structure of microsporidia. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. Hoboken, New Jersey: John Wiley and Sons, Inc., pp. 170. doi: 10.1002/9781118395264.ch1.Google Scholar
Vávra, J and Lukeš, J (2013) Microsporidia and ‘The Art of Living Together’. Advances in Parasitology 82, 253319.CrossRefGoogle ScholarPubMed
Vossbrinck, RC and Debrunner-Vossbrinck, AB (2005) Molecular phylogeny of the Microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitologica 52, 131142.CrossRefGoogle ScholarPubMed
Vossbrinck, CR, Debrunner-Vossbrinck, BA and Weiss, LM (2014) Phylogeny of the microsporidia. In Weiss, LM and Becnel, JJ (eds), Microsporidia: Pathogens of Opportunity. Hoboken, New Jersey: John Wiley and Sons, Inc., pp. 203220. doi: 10.1002/9781118395264.ch6.Google Scholar
Wang, C-Y, Solter, LF, T'sui, W-H and Wang, C-H (2005) An Endoreticulatus species from Ocinara lida (Lepidoptera: Bombycidae) in Taiwan. Journal of Invertebrate Pathology 89, 123135.CrossRefGoogle ScholarPubMed
Weiss, LM and Vossbrinck, CR (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia. In Wittner, M and Weiss, LM (eds), The Microsporidia and Microsporidiosis. Washington, D.C.: ASM Press, pp. 129171.Google Scholar
Williams, BAP, Hamilton, KM, Jones, MD and Bass, D (2018) Group-specific environmental sequencing reveals high levels of ecological heterogeneity across the microsporidian radiation: ecological heterogeneity in the microsporidia. Environmental Microbiology 10, 328336.Google Scholar
Zhu, X, Wittner, M, Tanowitz, HB, Kotler, D, Cali, A and Weiss, LM (1993) Small subunit rRNA sequence of Enterocytozoon bieneusi and its potential diagnostic role with use of the polymerase chain reaction. The Journal of Infectious Diseases 168, 15701575.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Yakovleva et al. supplementary material

Yakovleva et al. supplementary material 1

Download Yakovleva et al. supplementary material(PDF)
PDF 64.2 KB
Supplementary material: File

Yakovleva et al. supplementary material

Yakovleva et al. supplementary material 2

Download Yakovleva et al. supplementary material(File)
File 16.2 KB
Supplementary material: Image

Yakovleva et al. supplementary material

Yakovleva et al. supplementary material 3

Download Yakovleva et al. supplementary material(Image)
Image 4.2 MB