Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T09:44:04.441Z Has data issue: false hasContentIssue false

Characterization of a human–pathogenic Acanthamoeba griffini isolated from a contact lens-wearing keratitis patient in Spain

Published online by Cambridge University Press:  28 July 2014

I. HEREDERO-BERMEJO
Affiliation:
Departamento de Biomedicina y Biotecnología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
A. CRIADO-FORNELIO*
Affiliation:
Departamento de Biomedicina y Biotecnología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
I. DE FUENTES
Affiliation:
Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Ciencias de la Salud Carlos III, Carretera Majadahonda-Pozuelo km 2, 28224 Majadahonda, Madrid, Spain
J. SOLIVERI
Affiliation:
Departamento de Biomedicina y Biotecnología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
J. L. COPA-PATIÑO
Affiliation:
Departamento de Biomedicina y Biotecnología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
J. PÉREZ-SERRANO
Affiliation:
Departamento de Biomedicina y Biotecnología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
*
* Corresponding author: Departamento de Biomedicina y Biotecnología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain. E-mail: [email protected]

Summary

Amoebae were isolated from contact lenses of a symptomatic lens wearer in Spain. Protozoa were characterized by studying their morphology, biology, protease activity and the 18S rRNA gene sequence. Morphology of the organism was observed by light microscopy, scanning electron microscopy and transmission electron microscopy. Its structure corresponded to an amphizoic amoeba. The protozoa grew well at 37 °C and poorly at lower temperatures. In addition, it was capable of lysing mammalian cells in vitro. A major 56 kDa proteolytic enzyme was observed in amoeba crude extracts by gelatin–sodium dodecyl sulphate–polyacrylamide gel electrophoresis. Most proteolytic enzymes in protozoa extracts showed significant activity over a wide range of pH (3–9) and temperature (8–45 °C) values. The assays on inhibition of protease activity indicated strongly that enzymes detected in amoeba extracts corresponded to serine proteases and, to a lesser extent, cysteine proteases. The use of proteinase inhibitors on a tissue culture model proved that the proteinase activity is critical for developing focal lesions in HeLa cell monolayers. Finally, partial sequencing of the 18S ribosomal RNA gene and phylogenetic analyses indicated that the isolate is closely related to Acanthamoeba griffini H37 from the UK (T3 genotype).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alsam, S. A., Sissons, J., Jayasekera, S. and Khan, N. A. (2005). Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contributed to increased permeability in an in vitro model of the human blood–brain barrier. The Journal of Infection 51, 150156. doi: 10.1016/j.jinf.2004.09.001.Google Scholar
Arnalich-Montiel, F., Almendral, A., Arnalich, F., Valladares, B. and Lorenzo-Morales, J. (2012). Mixed Acanthamoeba and multidrug-resistant Achromobacter xyloxidans in late-onset keratitis after laser in situ keratomileusis. Journal of Cataract and Refractive Surgery 38, 18531856. doi: 10.1016/j.jcrs.2012.08.022.Google Scholar
Arnalich-Montiel, F., Lumbreras-Fernández, B., Martín-Navarro, C. M., Valladares, B., Lopez-Velez, R., Morcillo-Laiz, R. and Lorenzo-Morales, J. (2014). Influence of Acanthamoeba genotype on clinical course and outcomes for patients with Acanthamoeba keratitis in Spain. Journal of Clinical Microbiology 52, 12131216. doi: 10.1128/JCM.00031-14.Google Scholar
Cerva, L. (1969). Amoebic meningoencephalitis: axenic culture of Naegleria . Science 163, 576.Google Scholar
Criado-Fornelio, A. (2012). Chapter 1. Emerging protozoal tick-borne diseases of canids (piroplasmosis and hepatozoonosis): impact on wildlife conservation. In Carnivores: Species, Conservation and Management (ed. Álvares, F. I. and Mata, G. E.), pp. 148. Nova Science Publishers, Hauppage, New York, USA.Google Scholar
Dykstra, M. J. (1993). Agar embedment of cell suspensions or subcellular particulates for transmission electron microscopy. In A Manual of Applied Techniques for Biological Electron Microscopy (ed. Dykstra, D. J.), pp. 107108. Plenum Press, New York, USA.Google Scholar
Gatti, S., Rama, P., Matuska, S., Berrilli, F., Cavallero, A., Carletti, S., Bruno, A., Maserati, R. and Di Cave, D. (2010). Isolation and genotyping of Acanthamoeba strains from corneal infections in Italy. Journal of Medical Microbiology 59, 13241330. doi: 10.1099/jmm.0.019786-0.Google Scholar
González-Robles, A., Salazar-Villatoro, L., Omaña-Molina, M., Lorenzo-Morales, J. and Martínez-Palomo, A. (2013). Acanthamoeba royreba: morphological features and in vitro cytopathic effect. Experimental Parasitology 133, 369375. doi: 10.1016/j.exppara.2013.01.011.Google Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleid Acids Symposium Series 41, 9598.Google Scholar
Heredero-Bermejo, I., San Juan Martin, C., Soliveri de Carranza, J., Copa-Patiño, J. L. and Pérez-Serrano, J. (2012). Acanthamoeba castellanii: in vitro UAH-T17c3 trophozoite growth study in different culture media. Parasitology Research 110, 25632567. doi: 10.1007/s00436-011-2761-1.Google Scholar
Heredero-Bermejo, I., Copa-Patiño, J. L., Soliveri, J., García-Gallego, S., Rasines, B., Gómez, R., de la Mata, F. J. and Pérez-Serrano, J. (2013). In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitology Research 112, 961969. doi: 10.1007/s00436-012-3216-z.CrossRefGoogle ScholarPubMed
Janovy, J. Jr. Detwiler, J., Schwank, S., Bolek, M. G., Knipes, A. K. and Langford, G. J. (2007). New and emended descriptions of gregarines from flour beetles (Tribolium spp. and Palorus subdepressus: Coleoptera, Tenebrionidae). The Journal of Parasitology 93, 11551170. doi: 10.1645/GE-1090R.1.Google Scholar
Khan, N. A. (2009). Acanthamoeba: Biology and Pathogenesis, pp. 1209. Caister Academic Press, Norfolk, UK.Google Scholar
Khan, N. A. and Paget, T. A. (2002). Molecular tools for speciation and epidemiological studies of Acanthamoeba . Current Microbiology 44, 444449.CrossRefGoogle ScholarPubMed
Lagmay, J. P., Matias, R. R., Natividad, F. F. and Enriquez, G. L. (1999). Cytopathogenicity of Acanthamoeba isolates on rat glial C6 cell line. The Southeast Asian Journal of Tropical Medicine and Public Health 30, 670677.Google Scholar
Ledee, D. L., Hay, J., Thomas, F., Byers, T. J., Seal, D. V. and Kirknessf, C. M. (1996). Acanthamoeba griffini: molecular characterisation of a new corneal pathogen. Investigative Ophthalmology and Visual Science 37, 544550.Google Scholar
Leitsch, D., Köhsler, M., Marchetti-Deschmann, M., Deutsch, A., Allmaier, G., Duchêne, M. and Walochnik, J. (2010). Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryotic Cell 9, 611618. doi: 10.1128/EC.00300-09.Google Scholar
Lorenzo-Morales, J., Ortega-Rivas, A., Foronda, P., Abreu-Acosta, N., Ballart, D., Martínez, E. and Valladares, B. (2005). RNA interference (RNAi) for the silencing of extracellular serine proteases genes in Acanthamoeba: molecular analysis and effect on pathogenicity. Molecular and Biochemical Parasitology 144, 1015. doi: 10.1128/AAC.00329-10.Google Scholar
Lorenzo-Morales, J., Martín-Navarro, C. M., López-Arencibia, A., Santana-Morales, M. A., Afonso-Lehmann, R. N., Maciver, S. K., Valladares, B. and Martínez-Carretero, E. (2010). Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba . Antimicrobial Agents and Chemotherapy 54, 51515155. doi: 10.1128/AAC.00329-10.Google Scholar
Lorenzo-Morales, J., Morcillo-Laiz, R., Martín-Navarro, C. M., López-Vélez, R., López-Arencibia, A., Arnalich-Montiel, F., Maciver, S. K., Valladares, B. and Martínez-Carretero, E. (2011). Acanthamoeba keratitis due to genotype T11 in a rigid gas permeable contact lens wearer in Spain. Contact Lens and Anterior Eye: The Journal of the British Contact Lens Association 34, 8386. doi: 10.1016/j.clae.2010.10.007.Google Scholar
Lorenzo-Morales, J., Martín-Navarro, C. M., López-Arencibia, A., Arnalich-Montiel, F., Piñero, J. E. and Valladares, B. (2013). Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends in Parasitology 29, 181187. doi: 10.1016/j.pt.2013.01.006.Google Scholar
Maubon, D., Dubosson, M., Chiquet, C., Year, H., Brenier-Pinchart, M. P., Cornet, M., Savy, O., Renard, E. and Pelloux, H. (2012). A one-step multiplex PCR for Acanthamoeba keratitis diagnosis and quality samples control. Investigative Ophthalmology and Visual Science 53, 28662872. doi: 10.1167/iovs.11-8587.Google Scholar
Na, B. K., Kim, J. C. and Song, C. Y. (2010). Characterization and pathogenetic role of proteinase from Acanthamoeba castellanii . Microbial Pathogenesis 30, 3948. doi: 10.1006/mpat.2000.0403.Google Scholar
Omaña-Molina, M., González-Robles, A., Salazar-Villatoro, L. I., Lorenzo-Morales, J., Cristóbal-Ramos, A. R., Hernández-Ramírez, V. I., Talamás-Rohana, P., Méndez- Cruz, A. R. and Martínez-Palomo, A. (2013). Reevaluating the role of Acanthamoeba proteases in tissue invasion: observation of cytopathogenic mechanisms on MDCK cell monolayers and hamster corneal cells. BioMed Research International 2013, 461329. doi: 10.1155/2013/461329.Google Scholar
Ozkoc, S., Tuncay, S., Delibas, S. B., Akisu, C., Ozbek, Z., Durak, I. and Walochnik, J. (2008). Identification of Acanthamoeba genotype T4 and Paravahlkampfia sp. from two clinical samples. Journal of Medical Microbiology 57, 392396. doi: 10.1099/jmm.0.47650-0.Google Scholar
Risler, A., Coupat-Goutaland, B. and Pélandakis, M. (2013). Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis. Parasitology Research 112, 38073816. doi: 10.1007/s00436-013-3572-3.Google Scholar
Sajid, M. and McKerrow, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121. doi: 10.1016/S0166-6851(01)00438-8.Google Scholar
Schroeder, J. M., Booton, G., Hay, J., Niszl, I. A., Seal, D. V., Markis, M. B., Fuerst, P. A. and Byers, T. J. (2001). Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoeba from humans with keratitis and from sewage sludge. Journal of Clinical Microbiology 39, 19031911. doi: 10.1128/JCM.39.5.1903-1911.2001.Google Scholar
Serrano-Luna, J. J., Cervantes, I., Calderon, J., Navarro, F., Tsutsumi, V. and Shibayama, M. (2006). Protease activities of Acanthamoeba polyphaga and A. castellanii . Canadian Journal of Microbiology 52, 1623. doi: 10.1139/w05-114.Google Scholar
Sievers, F., Higgins, D. G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology 1079, 105116. doi: 10.1007/978-1-62703-646-7_6.Google Scholar
Spanakos, G., Tzanetou, K., Miltsakakis, D., Patsoula, E., Malamou-Lada, E. and Vakalis, N. C. (2006). Genotyping of pathogenic Acanthamoebae isolated from clinical samples in Greece – report of a clinical isolate presenting T5 genotype. Parasitology International 55, 147149. doi: 10.1016/j.parint.2005.12.001.Google Scholar
Stothard, D. R., Schroeder-Diedrich, J. M., Awwad, M. H., Gast, R. J., Leder, D. R., Rodríguez-Zaragoza, S., Dean, C. L., Fuerts, D. A. and Byers, T. J. (1998). The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequences. Journal of Eukaryotic Microbiology 45, 4554.Google Scholar
Tamura, S., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739. doi: 10.1093/molbev/msr121.Google Scholar
Walochnik, J., Haller-Schober, E., Kölli, H., Picher, O., Obwaller, A. and Aspöck, H. (2000). Discrimination between clinically relevant and nonrelevant Acanthamoeba strains isolated from contact lens-wearing keratitis patients in Austria. Journal of Clinical Microbiology 38, 39323936.Google Scholar
Yera, H., Zamfir, O., Bourcier, T., Viscogliosi, E., Noël, C., Dupouy-Camet, J. and Chaumeil, C. (2008). The genotypic characterisation of Acanthamoeba isolates from human ocular samples. British Journal of Ophthalmology 92, 11391141. doi: 10.1136/bjo.2007.132266.Google Scholar