Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T22:00:05.908Z Has data issue: false hasContentIssue false

The cell surface of Plasmodium gallinaceum sporozoites: microelectrophoretic and lectin-binding characteristics

Published online by Cambridge University Press:  06 April 2009

D. P. Turner*
Affiliation:
Department of Zoology and Applied Entomology, Imperial College, London SW7 2EE
N. A. Gregson*
Affiliation:
Anatomy Department, Guy's Hospital Medical School, London SE1 9RT
*
Caixa Postal 3, 66.000 Belém, Pará, Brazil.
Caixa Postal 3, 66.000 Belém, Pará, Brazil.

Summary

The cell surface properties of Plasmodium gallinaceum sporozoites have been investigated by means of microelectrophoretic and lectin-binding studies. Their electrophoretic mobility has been measured as a function of pH, the results suggesting qualitative and quantitative differences in the surface ionogenic groups between sporozoites from mature oocysts and those from salivary glands. Reaction of sporozoites with citraconic anhydride produced a small but significant increase in mobility, whereas 5,5-dithio-bis-(2-nitrobenzoic) acid had no effect on mobility; thus there appear to be amino groups but not –SH groups at the surface of sporozoites. Treatment of sporozoites with trypsin considerably reduced their mobility and suggests that a significant proportion of the cell surface charge is associated with protein. Incubation with neuraminidase, however, had no effect on sporozoite mobility and indicates that sialic acid residues, responsible for much of the negative charge associated with mammalian cells, are probably not present on the cell surface of sporozoites. Evidence for the presence of carbohydrates on the cell surface membrane of sporozoites was sought using fluorescein isothiocyanate–Concanavalin A. Results demonstrated that ligands similar to α-D-glucose and α-D-mannose are not present in an exposed or reactive form on the cell surface membrane of P. gallinaceum sporozoites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, M., Miller, L. H., Johnson, J. & Rabbege, J. (1978). Erythrocyte entry by malaria parasites. A moving junction between erythrocyte and parasite. Journal of Cell Biology 77, 7282.CrossRefGoogle ScholarPubMed
Bangham, A. D., Flemans, R., Heard, D. H. & Seaman, G. V. F. (1958). An apparatus for microelectrophoresis of small particles. Nature, London 182, 642–4.CrossRefGoogle ScholarPubMed
Bannister, L. H., Butcher, G. A., Dennis, E. D. & Mitchell, G. H. (1975). Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro. Parasitology 71, 483–91.CrossRefGoogle ScholarPubMed
Bannister, L. H., Butcher, G. A., McLaren, D. J. & Mitchell, G. H. (1979). Ultrastructural observations on changes in merozoites of Plasmodium knowlesi maintained in the absence of red cells. Journal of Protozoology 26, 77A.Google Scholar
Burger, M. M. (1969). A difference in the architecture of the surface membrane of normal and virally transformed cells. Proceedings of the National Academy of Sciences, USA 62, 9941001.CrossRefGoogle ScholarPubMed
Cook, G. M. W. & Stoddart, R. W. (1973). Surface Carbohydrates of the Eukaryotic Cell. London: Academic Press.Google Scholar
Cross, G. A. M. & Johnson, J. G. (1976). Structure and organization of the variant-specific surface antigens of Trypanosoma brucei. In Biochemistry of Parasites and Host–parasite Relationships (ed. Van den Bossche, H.), pp. 413420. Amsterdam: North-Holland Publishing Co.Google Scholar
David, P. H. & Hommel, M. (1979). Purification of plasmodial merozoites by differential elution from a Sepharose-Concanavalin A column. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 326.Google Scholar
David, P. H., Hommel, M., Benichou, J. C., Eisen, H. A. & Pereira da Silva, L. H. (1978). Isolation of malaria merozoites: release of Plasmodium chabaudi merozoites from schizonts bound to immobilized Concanavalin A. Proceedings of the National Academy of Sciences, USA 75, 5081–4.CrossRefGoogle ScholarPubMed
Dawidowicz, K., Hernandez, A. G. & Infante, R. B. (1975). The surface membrane of Leishmania. 1. The effects of lectins on different stages of Leishmania braziliensis. Journal of Parasitology 61, 950–3.CrossRefGoogle Scholar
Dixon, H. B. F. & Perham, R. N. (1968). Reversible blocking of amino groups with citraconic anhydride. The Biochemical Journal 109, 312–14.CrossRefGoogle ScholarPubMed
Dubremetz, J. F. & Ferreira, E. (1978). Capping of cationised ferritin by Coccidian zoites. Journal of Protozoology 25, 9B.Google Scholar
Dubremetz, J. F., Torpier, G., Maurois, P., Prensier, G. & Sinden, R. E. (1979). Structure de la pellicule du sporozoite de Plasmodium yoelii: étude par cytofracture. Compte Rendu Hebdomadaire des seances de l'Academie des Sciences 288, 623–6.Google Scholar
Dwyer, D. M. (1974). Lectin-binding saccharides on a parasitic protozoan. Science 184, 471–3.CrossRefGoogle ScholarPubMed
Dwyer, D. M. (1976). Cell surface saccharides of Trypanosoma lewisi. II. Lectin-mediated cell agglutination and fine structure cytochemical detection of lectin binding sites. Journal of Cell Science 22, 119.CrossRefGoogle ScholarPubMed
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82, 70–7.CrossRefGoogle ScholarPubMed
Eylar, E. H., Madoff, M. A., Brody, O. V. & Oncley, J. L. (1962). The contribution of sialic acid to the surface charge of the erythrocyte. Journal of Biological Chemistry 237, 19922000.CrossRefGoogle Scholar
Gibbons, I. & Perham, R. N. (1970). The reaction of aldolase with 2-methylmaleic anhydride. The Biochemical Journal 116, 843–9.CrossRefGoogle ScholarPubMed
Gregson, N. A. (1977). The surface properties of isolated rat brain myelin: a microelectrophoretic study. Journal of Neurochemistry 29, 895903.CrossRefGoogle ScholarPubMed
Holbrook, J. J. & Stinson, R. A. (1970). Reactivity of the essential thiol group of lactate dehydrodgenase and substrate binding. The Biochemical Journal 120, 289–97.CrossRefGoogle Scholar
Inbar, M. (1969). Interaction of the carbohydrate-binding protein Concanavalin A with normal and transformed cells. Proceedings of the National Academy of Sciences, USA 63, 1418–25.CrossRefGoogle ScholarPubMed
Inbar, M., Rabinowitz, Z. & Sachs, L. (1969). The formation of variants with a reversion of properties of transformed cells. III. Reversion of the structure of the cell surface membrane. International Journal of Cancer 4, 609–96.CrossRefGoogle Scholar
Jackson, P. R. (1977). Lectin-binding by Trypanosoma equiperdum. Journal of Parasitology 63, 814.CrossRefGoogle ScholarPubMed
Lee, K. C. (1972). Cell electrophoresis of the cellular slime mould Dictyostelium discoideum. I. Characterization of some of the cell surface ionogenic groups. Journal of Cell Science 10, 229–48.CrossRefGoogle ScholarPubMed
Lis, H. & Sharon, N. (1973). The biochemistry of plant lectins (phytohaemagglutins). Annual Review of Biochemistry 43, 541–74.CrossRefGoogle Scholar
Mehrishi, J. N. (1970). Positively charged amino groups on the surface of normal and cancer cells. European Journal of Cancer 6, 127–37.CrossRefGoogle ScholarPubMed
Miller, L. H., McAuliffe, F. M. & Mason, S. J. (1977). Erythrocyte receptors for malaria merozoites. American Journal of Tropical Medicine and Hygiene 26, 204–8.CrossRefGoogle ScholarPubMed
Miller, L. H., Powers, K. G., Finnerty, J. & Vanderberg, J. P. (1973). Difference in surface charge between host cells and malarial parasites. Journal of Parasitology 59, 925–7.CrossRefGoogle ScholarPubMed
Nicolson, G. L. (1974). The interactions of lectins with animal cell surfaces. International Review of Cytology 39, 89190.CrossRefGoogle ScholarPubMed
Ponder, R. (1951). Effects produced by trypsin on certain properties of the human red cell. Blood 6, 350–6.CrossRefGoogle ScholarPubMed
Schulman, S., Oppenheim, J. D. & Vanderberg, J. P. (1980). Plasmodium berghei and Plasmodium knowlesi: serum binding to sporozoites. Experimental Parasitology 49, 420–9.CrossRefGoogle ScholarPubMed
Seaman, G. V. F. & Heard, D. H. (1960). The surface of the washed human erythrocyte as a polyanion. Journal of General Physiology 44, 251–68.CrossRefGoogle ScholarPubMed
Seed, T. M., Aikawa, M. & Sterling, C. R. (1973). An electron-microscope cytochemical method for differentiating membranes of host red cells and malaria parasites. Journal of Protozoology 20, 603–5.CrossRefGoogle ScholarPubMed
Seed, T. M., Aikawa, M., Sterling, C. & Rabbege, J. (1974). Surface properties of extracellular malaria parasites: morphological and cytochemical study. Infection and Immunity 9, 750–61.CrossRefGoogle ScholarPubMed
Seed, T. M. & Krier, J. P. (1976). Surface properties of extracellular malaria parasites: electrophoretic and lectin-binding characteristics. Infection and Immunity 14, 1339–47.CrossRefGoogle ScholarPubMed
Sethi, K. K., Rahman, A., Pelster, B. & Brandis, H. (1977). Search for the presence of lectin-binding sites on Toxoplasma gondii. Journal of Parasitology 63, 1076–80.CrossRefGoogle ScholarPubMed
Sherbet, G. V. (1978). The Biophysical Characterization of the Cell Surface. London: Academic Press.Google Scholar
Sherman, I. W. & Jones, L. A. (1979). Plasmodium lophurae: Membrane proteins of erythrocyte-free plasmodia and malaria-infected red cells. Journal of Protozoology 26, 489501.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1978). Cell biology. In Rodent Malaria (ed.Killick-Kendrick, R. and Peters, W.), pp. 85168. London: Academic Press.Google Scholar
Sinden, R. E. & Garnham, P. C. C. (1973). A comparative study on the ultrastructure of Plasmodium sporozoites within the oocyst and salivary glands, with particular reference to the incidence of the micropore. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 631–7.CrossRefGoogle Scholar
Sterling, C. R., Aikawa, M. & Vanderberg, J. P. (1973). The passage of Plasmodium berghei sporozoites through the salivary glands of Anopheles stephensi: An electron microscope study. Journal of Parasitology 59, 593605.CrossRefGoogle ScholarPubMed
Turner, D. P. (1980). The development of the sporozoite of Plasmodium gallinaceum (A picomplexa: Haemosporina). Ph.D. thesis, University of London.Google Scholar
Turner, D. P. (1981). Preliminary observations on the cell surface of Plasmodium gallinaceum sporozoites. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 176–8.CrossRefGoogle ScholarPubMed
Vanderberg, J. P. (1974). Studies on the motility of Plasmodium sporozoites. Journal of Protozoology 21, 527–37.CrossRefGoogle ScholarPubMed
Vanderberg, J. P. (1975). Development of infectivity by the Plasmodium berghei sporozoite. Journal of Parasitology 61, 4350.CrossRefGoogle ScholarPubMed
Vanderberg, J. P., Nussenzweig, R. S., Sanabria, Y., Nawrot, R. & Most, H. (1972). Stage specificity of anti-sporozoite antibodies in rodent malaria and its relationship to protective immunity. Proceedings of the Helminthological Society of Washington 39, 514–25.Google Scholar
Warren, L. (1963). The distribution of sialic acids in nature. Comparative Biochemistry and Physiology 10, 153–71.CrossRefGoogle ScholarPubMed
Yoshida, N., Nussenzweig, R. S., Potocnjak, P., Nussenzweig, V. & Aikawa, M. (1980). Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science 207, 71–3.CrossRefGoogle ScholarPubMed
Zalik, S. E., Sanders, E. J. & Tilley, C. (1972). Studies on the surface of chick blastoderm cells. 1. Electrophoretic mobility and pH-mobility relationships. Journal of Cellular Physiology 79, 225–34.CrossRefGoogle Scholar