Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T19:00:28.141Z Has data issue: false hasContentIssue false

Aspects of helminth metabolism

Published online by Cambridge University Press:  06 April 2009

P. F. V. Ward
Affiliation:
Biochemistry Department, A.R.C. Institute of Animal Physiology, Babraham, Cambridge CB2 4AT

Extract

‘Each organism must be examined as a biochemical entity before any reasonable understanding of helminth metabolism can be attained’ (Saz, 1969).

Type
Trends and Perspectives
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J. & Beis, I. (1973 b). The redox state of the free nicotinamide adenine dinucleotide couple in the cytoplasm and mitochondria of muscle tissue from Ascaris lumbricoides (Nematoda). Comparative Biochemistry and Physiology 44A, 331–40.CrossRefGoogle ScholarPubMed
Barrett, J. & Beis, I. (1973 a). Studies on glycolysis in the muscle tissue of Ascaris lumbricoides (Nematoda). Comparative Biochemistry and Physiology 44B, 751–61.Google ScholarPubMed
Beames, C. G., Harris, B. G. & Hopper, F. A. (1967). The synthesis of fatty acids from acetate by intact tissue and muscle extract of Ascaris lumbricoides suum. Comparative Biochemistry and Physiology 20, 509–21.CrossRefGoogle ScholarPubMed
Von Brand, T. (1973). Metabolism of carbohydrates. In Biochemistry of Parasites 2nd ed., p. 90. New York and London: Academic Press.Google Scholar
von Brand, T., McMahon, P., Gibbs, E. & Higgins, H. (1964). Aerobic and anaerobic metabolism of larval and adult Taenia taeniaeformis. II. Hexose leakage and absorption; tissue glucose and polysaccharide. Experimental Parasitology 15, 410–29.CrossRefGoogle Scholar
Bueding, E. (1949). Studies on the metabolism of the filarial worm. Litomosoides carinii. Journal of Experimental Medicine 89, 107–30.CrossRefGoogle Scholar
Bueding, E. (1962). Comparative aspects of carbohydrate metabolism. Federation Proceedings, Federation of American Societies for Experimental Biology 21, 1039–46.Google ScholarPubMed
Chance, B. & Parsons, D. F. (1963). Cytochrome function in relation to inner membrane structure of mitochondria. Science 142, 1176–80.CrossRefGoogle ScholarPubMed
Cheah, K. S. (1967). The oxidase systems of Moniezia expansa (Cestoda). Comparative Biochemistry and Physiology 23, 277302.CrossRefGoogle ScholarPubMed
Cheah, K. S. (1976). Electron transport system of Ascaris muscle mitochondria. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Van den Bossche, H.). pp. 133–43. Amsterdam, New York and Oxford: North Holland Publishing Company.Google Scholar
Cheah, K. S. & Prichard, R. K. (1975). The electron transport systems of Fasciola hepatica mitochondria. International Journal for Parasitology 5, 183–6.CrossRefGoogle ScholarPubMed
Coles, G. C., Simpkin, K. G. & Barrett, J. (1980). Fasciola hepatica: Energy sources and metabolism. Experimental Parasitology 49, 122–7.CrossRefGoogle ScholarPubMed
Dicowsky, L., Repetto, Y. & Agosin, M. (1968). Studies on the metabolism of Echinococcus granulosus. X. The mechanism of production of volatile fatty acids. Comparative Biochemistry and Physiology 24, 763–72.CrossRefGoogle Scholar
Fairbairn, D. (1954). The metabolism of Heterakis gallinae. II. Carbon dioxide fixation. Experimental Parisitology 3, 5263.CrossRefGoogle Scholar
Fouquey, C., Polonsky, J. & Lederer, E. (1957). Sur la structure chimique de l' ‘alcool ascarylique’ isolé de Parascaris equorum. Bulletin de la Société de Chimie Biologique 39, 101–32.Google Scholar
Ginger, C. D. & Fairbairn, D. (1966). Lipid metabolism in helminth parasites. II. The major origins of the lipids of Hymenolepis diminuta (Cestoda). Journal of Parasitology 52, 1097–107.Google Scholar
Glocklin, V. C. & Fairbairn, D. (1952). The metabolism of Heterakis gallinae. I. Aerobic and anaerobic respiration: carbohydrate sparing action of carbon dioxide. Journal of Cellular and Comparative Physiology 39, 341–56.CrossRefGoogle Scholar
Goldberg, E. (1957). Intermediary metabolism of Trichinella spiralis. Experimental Parasitology 6, 367–82.CrossRefGoogle ScholarPubMed
Greichus, A. & Greichus, Y. A. (1970). Ascaris lumbricoides: incorporation of linoleic acid-1-14C into fatty acids. Experimental Parasitology 28, 210–16.CrossRefGoogle ScholarPubMed
Jezyck, P. F. & Fairbairn, D. (1967). Ascarosides and ascaroside esters in Ascaris lumbricoides (Nematoda). Comparative Biochemistry and Physiology 23, 707–19.CrossRefGoogle Scholar
Katz, H. & Wood, H. G. (1960). The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. Journal of Biological Chemistry 235, 2165–77.CrossRefGoogle ScholarPubMed
Kikuchi, G. & Ban, S. (1961). Cytochromes in the particulate preparation of the Ascaris lumbricoides muscle. Biochimica et biophysica acta 51, 387–9.CrossRefGoogle ScholarPubMed
Kikuchi, G., Ramirez, J. & Barron, Gusman E. S. (1959). Electron transport system in Ascaris lumbricoides. Biochimica et biophysica acta 36, 335–42.CrossRefGoogle ScholarPubMed
Köhler, P. & Saz, H. J. (1976). Demonstration and possible function of NADH:NAD+ transhydrogenation from Ascaris muscle mitochondria. Journal of Biological Chemistry 251, 2217–25.CrossRefGoogle Scholar
Lahoud, H., Prichard, R. K., McManus, W. R. & Schofield, P. J. (1971). Volatile fatty acid production by the adult liver fluke Fasciola hepatica. Comparative Biochemistry and Physiology 38B, 379–91.Google Scholar
Laser, H. (1948). Haemolytic system in the blood of malaria-infected monkeys. Nature, London 161, 560–1.CrossRefGoogle ScholarPubMed
Laser, H. (1950). The isolation of a haemolytic substance from animal tissues and its biological properties. Journal of Physiology 110, 338–55.CrossRefGoogle Scholar
Laser, H., Kemp, P., Miller, N., Lander, D. & Klein, R. (1975). Malaria, quinine and red cell lysis. Parasitology 71, 167–81.CrossRefGoogle ScholarPubMed
Le Jambre, L. F. & Whitlock, J. H. (1967). Oxygen influence on egg production by a parasitic nematode. Journal of Parasitology 53, 87.Google ScholarPubMed
McElhaney, R. N. (1976). The biological significance of alterations in the fatty acid composition of microbial membrane lipids in response to changes in environmental temperature. In Extreme Environments: Mechanisms of Microbial Adaptation (ed. Heinrich, M. R.), pp. 255–81. New York and London: Academic Press.CrossRefGoogle Scholar
Meyer, F., Meyer, H. & Bueding, E. (1970). Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochimica et biophysica acta 210, 257–66.CrossRefGoogle ScholarPubMed
Morton, I. D. & Todd, A. R. (1950). The haemolytic acid present in horse brain, 1. Purification and identification as cis-octadec-11-enoic acid. The Biochemical Journal 47, 327–30.CrossRefGoogle Scholar
Orpin, C. G., Huskisson, N. S. & Ward, P. F. V. (1976). Molecular structure and morphology of glycogen isolated from the cestode, Moniezia expansa. Parasitology 73, 8395.CrossRefGoogle ScholarPubMed
Orrell, S. A. & Bueding, E. (1964). A comparison of products obtained by various procedures used for the extraction of glycogen. Journal of Biological Chemistry 239, 4021–6.CrossRefGoogle ScholarPubMed
Oya, H., Kikuchi, G., Bando, T. & Hayashi, H. (1965). Muscle tricarboxylic acid cycle in Ascaris lumbricoides var. suis. Experimental Parasitology 17, 229–40.CrossRefGoogle ScholarPubMed
Parshad, V. R., Crompton, D. W. T. & Nesheim, M. C. (1980). The growth of Moniliformis (Acanthocephala) in rats fed on various monosaccharides and disaccharides. Proceedings of the Royal Society, B 209, 299315.Google ScholarPubMed
Peters, R. A. (1952). Croonian Lecture: Lethal synthesis. Prodeedings of the Royal Society, B 139, 143–70.Google Scholar
Podesta, R. B. (1978). Characterization in vitro of H+ secretion and H+: Na+ exchange by an organism normally inhabiting a CO2-rich environment: Hymenolepis diminuta (Cestoda) in the rat intestine. Canadian Journal of Zoology 56, 2344–54.CrossRefGoogle Scholar
Podesta, R. B., Mustafa, T., Moon, T. W., Hulbert, W. C. & Mettrick, D. F. (1976). Anaerobes in an aerobic environment: role of CO2 in energy metabolism of Hymenolepis diminuta. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Van den Bossche, H.), pp. 81–8. Amsterdam, New York and Oxford North Holland Publishing Company.Google Scholar
Prichard, R. K. & Schofield, P. J. (1968). The metabolism of phosphoenolpyruvate and pyruvate in the adult liver fluke Fasciola hepatica. Biochimica et biophysica acta 170, 6376.CrossRefGoogle Scholar
Reid, W. M. (1945). Comparison between in vitro and in vivo glycogen utilization in the fowl nematode Ascaridia galli. Journal of Parasitology 31, 406–10.CrossRefGoogle ScholarPubMed
Rew, R. S. & Saz, H. J. (1974). Enzyme localization in the anaerobic mitochondria of Ascaris lumbricoides. Journal of Cell Biology 63, 125–35.CrossRefGoogle ScholarPubMed
Rogers, W. P. (1949). The biological significance of haemoglobin in nematode parasites. Australian Journal of Biological Research, B 2, 287303.Google Scholar
Rogers, W. P. & Lazarus, M. (1949). Glycolysis and related phosphorus metabolism in parasitic nematodes. Parasitology 39, 302–14.CrossRefGoogle ScholarPubMed
Roberts, L. S. & Fairbairn, D. (1965). Metabolic studies on adult Nippostrongylus brasiliensis. (Nematoda: Trichostrongyloidea). Journal of Parasitology 51, 129–38.CrossRefGoogle ScholarPubMed
Saz, D. K., Bonner, T. P., Karlin, M. & Saz, H. J. (1971). Biochemical observations on adult Nippostrongylus brasiliensis. Journal of Parasitology 57, 1159–62.CrossRefGoogle ScholarPubMed
Saz, H. J. (1969). Carbohydrate and energy. Metabolism of nematodes and acanthocephala. In Chemical Zoology, vol. 3 (ed. Florkin, M. and Scheer, B. T.) p. 356. New York and London: Academic Press.Google Scholar
Saz, H. J. (1971). Anaerobic phosphorylation in Ascaris mitochondria and the effects of anthelmintics. Comparative Biochemistry and Physiology 39B, 627–37.Google Scholar
Saz, H. J. & Hubbard, J. A. (1957). The oxidative decarboxylation of malate by Ascaris lumbricoides. Journal of Biological Chemistry 225, 921–33.CrossRefGoogle ScholarPubMed
Scheibel, L. W. & Saz, H. J. (1966). The pathway for anaerobic carbohydrate dissimilation in Hymenolepis diminuta. Comparative Biochemistry and Physiology 18, 151–62.CrossRefGoogle ScholarPubMed
Siesjö, B. K. (1973). Metabolic control of intracellular pH. Scandinavian Journal of Clinical and Laboratory Investigation 32, 97104.CrossRefGoogle ScholarPubMed
Smith, M. H. (1969). Do intestinal parasites require oxygen? Nature, London 223, 1129–32.CrossRefGoogle ScholarPubMed
Van Vugt, F., Kalayciogĉlu, L. & Van Den Bergh, S. G. (1976). ATP production in Fasciola hepatica mitochondria. In Biochemistry of Parasites and Host–Parasite Relationships (ed. Van den Bossche, H.), pp. 151–8. Amsterdam, New York and Oxford: North Holland Publishing Co.Google Scholar
Van Vugt, F., Van Der Meer, P. & Van Den Bergh, S. G. (1979). The formation of propionate and acetate as terminal processes of the energy metabolism of the adult liver fluke Fasciola hepatica. International Journal of Biochemistry 10, 1118.Google Scholar
Wang, E. J. & Saz, H. J. (1974). Comparative biochemical studies of Litomosoides carinii, Dipetalonema viteae and Brugia pahangi adults. Journal of Parasitology 60, 316–21.Google Scholar
Ward, C. W. & Schofield, P. J. (1967). Comparative activity and intracellular distribution of tricarboxylic acid cycle enzymes in Haemonchus contortus larvae and rat liver. Comparative Biochemistry and Physiology 23, 335–9.CrossRefGoogle ScholarPubMed
Ward, P. F. V. (1974). The metabolism of glucose by Haemonchus contortus in vitro. Parasitology 69, 175–90.CrossRefGoogle Scholar
Ward, P. F. V., Coadwell, W. J. & Huskisson, N. S. (1981). The glucose metabolism of adult Ostertagia circumcincta in vitro. Parasitology 82, 1722.CrossRefGoogle ScholarPubMed
Ward, P. F. V. & Huskisson, N. S. (1978). The energy metabolism of adult Haemonchus contortus, in vitro. Parasitology 77, 255–71.CrossRefGoogle ScholarPubMed
Ward, P. F. V. & Huskisson, N. S. (1980). The role of carbon dioxide in the metabolism of adult Haemonchus contortus in vitro. Parasitology 80, 7382.CrossRefGoogle Scholar
Watts, S. D. M. & Fairbairn, D. (1974). Anaerobic excretion of fermentation acids by Hymenolepis diminuta during development in the definitive host. Journal of Parasitology 60, 621–5.CrossRefGoogle ScholarPubMed
White, D. C. (1963). Factors affecting the affinity for oxygen of cytochrome oxidase in Hemophilus parainfluenzae. Journal of Biological Chemistry 238, 3757–61.CrossRefGoogle ScholarPubMed