Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T04:54:00.180Z Has data issue: false hasContentIssue false

Seco-limonoid derived from Raputia heptaphylla promotes the control of cutaneous leishmaniasis in hamsters (Mesocricetus auratus)

Published online by Cambridge University Press:  23 December 2015

DIANA GRANADOS-FALLA
Affiliation:
Research Group in Immunotoxicology, Faculty of Sciences, Universidad Nacional de Colombia, Bogota 11001, Colombia
ANGELA GOMEZ-GALINDO
Affiliation:
Research Group in Immunotoxicology, Faculty of Sciences, Universidad Nacional de Colombia, Bogota 11001, Colombia
ALEJANDRO DAZA
Affiliation:
PECET – Medical Research Institute, School of Medicine, Universidad de Antioquia, Medellin 50010, Colombia
SARA ROBLEDO
Affiliation:
PECET – Medical Research Institute, School of Medicine, Universidad de Antioquia, Medellin 50010, Colombia
CARLOS COY-BARRERA
Affiliation:
Research Laboratory of Natural Plant Products, Faculty of Sciences, Universidad Nacional de Colombia, Bogota 11001, Colombia
LUIS CUCA
Affiliation:
Research Laboratory of Natural Plant Products, Faculty of Sciences, Universidad Nacional de Colombia, Bogota 11001, Colombia
GABRIELA DELGADO*
Affiliation:
Research Group in Immunotoxicology, Faculty of Sciences, Universidad Nacional de Colombia, Bogota 11001, Colombia
*
*Corresponding author: Pharmacy Department, Faculty of Sciences, Universidad Nacional de Colombia, Kr 45 # 26–85, Bogota, Colombia. E-mail: [email protected].

Summary

The rational search of novel bioactive molecules against pathogens with immunomodulatory activity is presently one of the most significant approaches to discover and design new therapeutic agents for effective control of infectious diseases, such as the infection caused by Leishmania parasites. In the present study, we evaluated the therapeutic efficacy of the recently characterized immunomodulatory compound 11α,19β-dihydroxy-7-acetoxy-7-deoxoichangin, a seco-limonoid derived from the bark of Raputia heptaphylla (Pittier) using: (1) peritoneal macrophages and (2) Mesocricetus auratus hamsters infected with Leishmania (V.) panamensis and Leishmania (L.) amazonensis. We observed the ability of this seco-limonoid to induce the effective control of the parasite either in vitro [determining an effective concentration 50 (EC50) of 59 µ m at the infection model] and in vivo (inducing clinical improvement or even cure in infected animals treated compared with the groups of animals treated with vehicle solution or meglumine antimoniate).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramoff, M., Magalhaes, P. and Ram, S. (2004). Image processing with ImageJ. Biophotonics International 11, 3642.Google Scholar
Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M. and WHO Leishmaniasis Control Team (2012). Leishmaniasis Worldwide and Global Estimates of Its Incidence. PloS ONE 7, 112.CrossRefGoogle ScholarPubMed
AVMA (2007). AVMA Guidelines on Euthanasia (Formerly Report of the AVMA Panel on Euthanasia), pp. 1112. American Veterinary Medical Association. https://grants.nih.gov/grants/olaw/Euthanasia2007.pdf Google Scholar
Awasthi, A., Mathur, R. K. and Saha, B. (2004). Immune response to Leishmania infection. Indian Journal of Medical Research 119, 238258.Google Scholar
Batista, R., Silva Ade, J. Jr. and de Oliveira, A. B. (2009). Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14, 30373072.Google Scholar
Berman, J., Bryceson, A. D., Croft, S., Engel, J., Gutteridge, W., Karbwang, J., Sindermann, H., Soto, J., Sundar, S. and Urbina, J. A. (2006). Miltefosine: issues to be addressed in the future. Transactions of the Royal Society of Tropical Medicine & Hygiene 100 (Suppl 1), S41S44.Google Scholar
Bey, E. and Harington, J. (1971). Cytotoxic effects of some mineral dusts on Syrian hamster peritoneal macrophages. The Journal of Experimental Medicine 135, 11491169.CrossRefGoogle Scholar
Clem, A. (2010). A current perspective on leishmaniasis. Journal of Global Infectious Diseases 2, 124126.Google Scholar
Coy Barrera, C. A., Coy Barrera, E. D., Granados Falla, D. S., Delgado Murcia, G. and Cuca Suarez, L. E. (2011). seco-limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. Chemical and Pharmaceutical Bulletin 59, 855859.Google Scholar
Croft, S. L., Seifert, K. and Yardley, V. (2006 a). Current scenario of drug development for leishmaniasis. Indian Journal of Medical Research 123, 399410.Google ScholarPubMed
Croft, S. L., Sundar, S. and Fairlamb, A. H. (2006 b). Drug resistance in leishmaniasis. Clinical Microbiology Reviews 19, 111126.CrossRefGoogle ScholarPubMed
de Carvalho, P. B. and Ferreira, E. I. (2001). Leishmaniasis phytotherapy. Nature's leadership against an ancient disease. Fitoterapia 72, 599618.CrossRefGoogle ScholarPubMed
Delgado, J., Macias, J., Pineda, J. A., Corzo, J. E., Gonzalez-Moreno, M. P., de la Rosa, R., Sanchez-Quijano, A., Leal, M. and Lissen, E. (1999). High frequency of serious side effects from meglumine antimoniate given without an upper limit dose for the treatment of visceral leishmaniasis in human immunodeficiency virus type-1-infected patients. The American Journal of Tropical Medicine and Hygiene 61, 766769.Google Scholar
Dorlo, T. P., Balasegaram, M., Beijnen, J. H. and de Vries, P. J. (2012). Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy 67, 25762597.CrossRefGoogle ScholarPubMed
El-On, J. (2009). Current status and perspectives of the immunotherapy of leishmaniasis. The Israel Medical Association Journal 11, 623628.Google ScholarPubMed
Flecknell, P. (1996). Laboratory Animal Anaesthesia, 2nd Edn. Academic Press, New York.Google Scholar
Githua, M., Hassanali, A., Keriko, J., Murilla, G., Ndungu, M. and Nyagah, G. (2010). New antitrypanosomal tetranotriterpenoids from Azadirachta indica . African Journal of Traditional, Complementary, and Alternative Medicines 7, 207213.Google Scholar
Granados-Falla, D., Coy-Barrera, C., Cuca, L. and Delgado, G. (2013). seco-limonoid 11α,19β-dihydroxy-7-acetoxy-7-deoxoichangin promotes the resolution of Leishmania panamensis infection. Advances in Bioscience and Biotechnology 4, 304315.CrossRefGoogle Scholar
Hay, A. E., Ioset, J. R., Ahua, K. M., Diallo, D., Brun, R. and Hostettmann, K. (2007). Limonoid orthoacetates and antiprotozoal compounds from the roots of Pseudocedrela kotschyi . Journal of Natural Products 70, 913.Google Scholar
Henao, H. H., Osorio, Y., Saravia, N. G., Gomez, A. and Travi, B. (2004). [Efficacy and toxicity of pentavalent antimonials (Glucantime and Pentostam) in an American cutaneous leishmaniasis animal model: luminometry application]. Biomedica 24, 393402.CrossRefGoogle Scholar
Mansueto, P., Vitale, G., Di Lorenzo, G., Rini, G. B., Mansueto, S. and Cillari, E. (2007). Immunopathology of leishmaniasis: an update. International Journal of Immunopathology and Pharmacology 20, 435445.Google Scholar
Meheus, F., Balasegaram, M., Olliaro, P., Sundar, S., Rijal, S., Faiz, M. A. and Boelaert, M. (2010). Cost-effectiveness analysis of combination therapies for visceral leishmaniasis in the Indian subcontinent. PLoS Neglected Tropical Diseases 4, e818.CrossRefGoogle ScholarPubMed
Mougneau, E., Altare, F., Wakil, A. E., Zheng, S., Coppola, T., Wang, Z. E., Waldmann, R., Locksley, R. M. and Glaichenhaus, N. (1995). Expression cloning of a protective Leishmania antigen. Science 268, 563566.Google Scholar
Mougneau, E., Bihl, F. and Glaichenhaus, N. (2011). Cell biology and immunology of Leishmania . Immunological Reviews 240, 286296.Google Scholar
Newman, D. J. and Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70, 461477.Google Scholar
Nylen, S. and Gautam, S. (2010). Immunological perspectives of leishmaniasis. Journal of Global Infectious Diseases 2, 135146.CrossRefGoogle ScholarPubMed
O'Brien, J., Wilson, I., Orton, T. and Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry 267, 54215426.CrossRefGoogle ScholarPubMed
Pulido, S. A., Munoz, D. L., Restrepo, A. M., Mesa, C. V., Alzate, J. F., Velez, I. D. and Robledo, S. M. (2012). Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Tropica 122, 3645.CrossRefGoogle ScholarPubMed
Robledo, S. M., Puerta, J. A., Munoz, D. L., Guardo, M. and Velez, I. D. (2006). Efficacy and tolerance of pentamidine for treatment of cutaneous leishmaniasis caused by L. (V) panamensis in Colombia. Biomedica 26 (Suppl. 1), 188193.CrossRefGoogle Scholar
Robledo, S., Carrillo, L., Daza, A., Restrepo, A., Muñoz, D., Tobón, J., Murillo, J., López, A., Ríos, C., Mesa, C., Upegui, Y., Valencia-Tobón, A., Mondragón-Shem, K., Rodríguez, B. and ID, V. (2012). Cutaneous leishmaniasis in the dorsal skin of hamsters: a useful model for the screening of antileishmanial drugs. Journal of Visualized Experiments e3533, 19.Google Scholar
Rosas, L. V. (2005). Phytochemistry, chemosystematic and searching of new antichagasic and antileishmaniasis drugs: study of Raputia praetermissa (Rutaceae). Tesis Universidad Federal de San Carlos – Brasil San Carlos, 280 p.Google Scholar
Santos, D. O., Coutinho, C. E., Madeira, M. F., Bottino, C. G., Vieira, R. T., Nascimento, S. B., Bernardino, A., Bourguignon, S. C., Corte-Real, S., Pinho, R. T., Rodrigues, C. R. and Castro, H. C. (2008). Leishmaniasis treatment—a challenge that remains: a review. Parasitology Research, 103, 110.CrossRefGoogle ScholarPubMed
Schneider, C., Rasband, W. and Eliceiri, K. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods 9, 671675.CrossRefGoogle ScholarPubMed
TDR (2004). Report of the Scientific Working Group meeting on Leishmaniasis. Tropical Disease Research – World Health Organization, Geneva.Google Scholar
WHO (2005). Report of a WHO Informal Consultation on Liposomal Amphotericin B in the Treatment of Visceral Leishmaniasis. pp. 25. Rome, Italy.Google Scholar
WHO (2010). Control of the Leishmaniasis (Report of a meeting of the WHO Expert Committee on the Control of Leishmaniasis). Geneva. http://apps.who.int/iris/bitstream/10665/44412/1/WHO_TRS_949_eng.pdf Google Scholar