Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T18:49:37.379Z Has data issue: false hasContentIssue false

Immunological underpinnings of Ascaris infection, reinfection and co-infection and their associated co-morbidities

Published online by Cambridge University Press:  12 April 2021

Luisa Magalhães
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Denise S. Nogueira
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Pedro H. Gazzinelli-Guimarães
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
Fabricio M. S. Oliveira
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Lucas Kraemer
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Ana Clara Gazzinelli-Guimarães
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Flaviane Vieira-Santos
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Ricardo T. Fujiwara
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Lilian L. Bueno*
Affiliation:
Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
*
Author for correspondence: Lilian L. Bueno, E-mail: [email protected] and [email protected]

Abstract

Human ascariasis is the most common and prevalent neglected tropical disease and is estimated that ~819 million people are infected around the globe, accounting for 0.861 million years of disability-adjusted life years in 2017. Even with the existence of highly effective drugs, the constant presence of infective parasite eggs in the environment contribute to a high reinfection rate after treatment. Due to its high prevalence and broad geographic distribution Ascaris infection is associated with a variety of co-morbidities and co-infections. Here, we provide data from both experimental models and humans studies that illustrate how complex is the interaction of Ascaris with the host immune system, especially, in the context of reinfections, co-infections and associated co-morbidities.

Type
Review Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abossie, A and Petros, B (2015) Deworming and the immune status of HIV positive pre-antiretroviral therapy individuals in Arba Minch, Chencha and Gidole hospitals, Southern Ethiopia. BMC Research Notes 8, 483. doi: 10.1186/s13104-015-1461-9CrossRefGoogle ScholarPubMed
Acevedo, N and Caraballo, L (2011) IgE cross-reactivity between Ascaris lumbricoides and mite allergens: possible influences on allergic sensitization and asthma. Parasite Immunology 33, 309321.10.1111/j.1365-3024.2011.01288.xCrossRefGoogle ScholarPubMed
Acevedo, N, Sánchez, J, Erler, A, Mercado, D, Briza, P, Kennedy, M, Fernandez, A, Gutierrez, M, Chua, KY, Cheong, N, Jiménez, S, Puerta, L and Caraballo, L (2009) IgE cross-reactivity between ascaris and domestic mite allergens: the role of tropomyosin and the nematode polyprotein ABA-1. Allergy: European Journal of Allergy and Clinical Immunology 64, 16351643.10.1111/j.1398-9995.2009.02084.xCrossRefGoogle ScholarPubMed
Aceves, SS (2014) Remodeling and fibrosis in chronic eosinophil inflammation. Digestive Diseases 32, 1521.10.1159/000357004CrossRefGoogle ScholarPubMed
Aleksandra, L, Barbara, Z, Natalia, L-A, Danuta, K-B, Renata, G-K and Ewa, M-L (2016) Respiratory failure associated with ascariasis in a patient with immunodeficiency. Case Reports in Infectious Diseases 2016, 15.10.1155/2016/4070561CrossRefGoogle Scholar
Alves, E, da S, B, Conceição, MJ and Leles, D (2016) Ascaris lumbricoides, Ascaris suum, or “Ascaris lumbrisuum”? The Journal of Infectious Disease 213, 13551355.10.1093/infdis/jiw027CrossRefGoogle Scholar
Babu, S and Nutman, TB (2016) Helminth-Tuberculosis Co-infection: an immunologic perspective. Trends in Immunology 37, 597607.10.1016/j.it.2016.07.005CrossRefGoogle Scholar
Benítez, SC (2006) Bleomicina: un modelo de fibrosis pulmonar, 1st Edn. Mexico: Revista Ded Instituto Nacional De Enfermidades Respiratorias.Google Scholar
Bethony, J, Brooker, S, Albonico, M, Geiger, SM, Loukas, A, Diemert, D and Hotez, PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet (London, England) 367, 15211532.10.1016/S0140-6736(06)68653-4CrossRefGoogle ScholarPubMed
Blish, CA, Sangaré, L, Herrin, BR, Richardson, BA, John-Stewart, G and Walson, JL (2010) Changes in plasma cytokines after treatment of Ascaris lumbrkoides infection in individuals with HIV-1 infection. Journal of Infectious Diseases 201, 18161821.10.1086/652784CrossRefGoogle ScholarPubMed
Bradbury, RS, Piedrafita, D, Greenhill, A and Mahanty, S (2020) Will helminth co-infection modulate COVID-19 severity in endemic regions? Nature Reviews Immunology 20, 342.10.1038/s41577-020-0330-5CrossRefGoogle ScholarPubMed
Brooker, S (2010) Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers – A review. International Journal for Parasitology 40, 11371144.10.1016/j.ijpara.2010.04.004CrossRefGoogle ScholarPubMed
Brutus, L, Watier, L, Briand, V, Hanitrasoamampionona, V, Razanatsoarilala, H and Cot, M (2006) Parasitic Co-Infections: Does Ascaris lumbricoides Protect Against Plasmodiun falciparum Infection?.10.4269/ajtmh.2006.75.194CrossRefGoogle Scholar
Caraballo, L, Acevedo, N and Buendía, E (2015) Human ascariasis increases the allergic response and allergic symptoms. Current Tropical Medicine Reports 2, 224232.10.1007/s40475-015-0058-7CrossRefGoogle Scholar
CDC (2019) CDC – Ascariasis – General Information – Frequently Asked Questions (FAQs).Google Scholar
Chachage, M, Podola, L, Clowes, P, Nsojo, A, Bauer, A, Mgaya, O, Kowour, D, Froeschl, G, Maboko, L, Hoelscher, M, Saathoff, E and Geldmacher, C (2014) Helminth-associated systemic immune activation and HIV Co-receptor expression: response to Albendazole/Praziquantel treatment. PLoS Neglected Tropical Diseases 8, e2755. doi: 10.1371/journal.pntd.0002755CrossRefGoogle ScholarPubMed
Chan, MS (1997) The global burden of intestinal nematode infections – fifty years on. Parasitology Today 13, 438443.10.1016/S0169-4758(97)01144-7CrossRefGoogle Scholar
Chen, F, Liu, Z, Wu, W, Rozo, C, Bowdridge, S, Millman, A, Van Rooijen, N, Urban, JF, Wynn, TA and Gause, WC (2012) An essential role for T H 2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Medicine 18, 260266.10.1038/nm.2628CrossRefGoogle Scholar
Chiaramonte, MG, Donaldson, DD, Cheever, AW and Wynn, TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. Journal of Clinical Investigation 104, 777785.10.1172/JCI7325CrossRefGoogle ScholarPubMed
Conterno, LO, Turchi, MD, Corrêa, I and Monteiro de Barros Almeida, RA (2020) Anthelmintic drugs for treating ascariasis. Cochrane Database of Systematic Reviews 2020(4), CD010599. doi: 10.1002/14651858.CD010599.pub2CrossRefGoogle Scholar
Cooper, PJ, Chico, ME, Sandoval, C, Espinel, I, Guevara, A, Kennedy, MW, Urban, JF, Griffin, GE and Nutman, TB (2000) Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. Journal of Infectious Diseases 182, 12071213.10.1086/315830CrossRefGoogle ScholarPubMed
Cooper, PJJ, Chico, MEE, Sandoval, C and Nutman, TBB (2004) Atopic phenotype is an important determinant of immunoglobulin E-mediated inflammation and expression of T helper cell type 2 cytokines to Ascaris antigens in children exposed to ascariasis. The Journal of Infectious Diseases 190, 13381346.10.1086/423944CrossRefGoogle ScholarPubMed
Crompton, DWT (1985) Chronic ascariasis and malnutrition. Parasitology Today 1, 4752.10.1016/0169-4758(85)90114-0CrossRefGoogle ScholarPubMed
Cruz, AA, Cooper, PJ, Figueiredo, CA, Alcantara-Neves, NM, Rodrigues, LC and Barreto, ML (2017) Global issues in allergy and immunology: parasitic infections and allergy. Journal of Allergy and Clinical Immunology 140, 12171228.10.1016/j.jaci.2017.09.005CrossRefGoogle ScholarPubMed
da Costa Santiago, H and Nutman, TB (2016) Role in allergic diseases of immunological cross- reactivity between allergens and homologues of parasite proteins. Critical Reviews in Immunology 36, 111.10.1615/CritRevImmunol.2016016545CrossRefGoogle Scholar
da Costa Santiago, HC, Ribeiro-Gomes, FL, Bennuru, S and Nutman, TB (2015) Helminth infection alters IgE responses to allergens structurally related to parasite proteins. The Journal of Immunology 194, 93100.10.4049/jimmunol.1401638CrossRefGoogle Scholar
Daniłowicz-Luebert, E, O'Regan, NL, Steinfelder, S and Hartmann, S (2011) Modulation of specific and allergy-related immune responses by helminths. Journal of Biomedicine and Biotechnology 2011, 821578. doi: 10.1155/2011/821578CrossRefGoogle ScholarPubMed
Dawkins, HJS and Grove, DI (1982) Immunisation of mice against strongyloides ratti. Zeitschrift für Parasitenkunde Parasitology Research 66, 327333.10.1007/BF00925349CrossRefGoogle ScholarPubMed
Degarege, A and Erko, B (2016) Epidemiology of Plasmodium and helminth coinfection and possible reasons for heterogeneity. BioMed Research International 2016, 3083568. doi: 10.1155/2016/3083568CrossRefGoogle ScholarPubMed
de Silva, NR, Chan, MS and Bundy, DAP (1997) Morbidity and mortality due to ascariasis: re-estimation and sensitivity analysis of global numbers at risk. Tropical Medicine & International Health 2, 513518.10.1046/j.1365-3156.1997.d01-320.xCrossRefGoogle ScholarPubMed
Dold, C and Holland, CV (2011) Ascaris and ascariasis. Microbes and Infection 13, 632637.10.1016/j.micinf.2010.09.012CrossRefGoogle ScholarPubMed
Dold, C, Cassidy, JP, Stafford, P, Behnke, JM and Holland, CV (2010) Genetic influence on the kinetics and associated pathology of the early stage (intestinal-hepatic) migration of Ascaris suum in mice. Parasitology 137, 173185.10.1017/S0031182009990850CrossRefGoogle ScholarPubMed
Douvres, FW, Tromba, FG and Malakatis, GM (1969) Morphogenesis and migration of Ascaris suum larvae developing to fourth stage in swine. The Journal of Parasitology 55, 689712.10.2307/3277198CrossRefGoogle ScholarPubMed
Elias, D, Wolday, D, Akuffo, H, Petros, B, Bronner, U and Britton, S (2001) Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clinical and Experimental Immunology 123, 219225.10.1046/j.1365-2249.2001.01446.xCrossRefGoogle Scholar
Elias, D, Britton, S, Aseffa, A, Engers, H and Akuffo, H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 26, 38973902.10.1016/j.vaccine.2008.04.083CrossRefGoogle ScholarPubMed
Eriksen, L, Nansen, P, Roepstorff, A, Lind, P and Nilsson, O (1992) Response to repeated inoculations with Ascaris suum eggs in pigs during the fattening period – I. Studies on worm population kinetics. Parasitology Research 78, 241246.10.1007/BF00931733CrossRefGoogle ScholarPubMed
Fonte, L, Acosta, A, Sarmiento, ME, Ginori, M, García, G and Norazmi, MN (2020) COVID-19 Lethality in Sub-Saharan Africa and helminth immune modulation. Frontiers in Immunology 11, 574910.10.3389/fimmu.2020.574910CrossRefGoogle ScholarPubMed
Garza-Cuartero, L, O'Sullivan, J, Blanco, A, McNair, J, Welsh, M, Flynn, RJ, Williams, D, Diggle, P, Cassidy, J and Mulcahy, G (2016) Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response. Parasite Immunology 38, 387402.10.1111/pim.12326CrossRefGoogle ScholarPubMed
Gause, WC, Urban, JF and Stadecker, MJ (2003) The immune response to parasitic helminths: insights from murine models. Trends in Immunology 24, 269277.10.1016/S1471-4906(03)00101-7CrossRefGoogle ScholarPubMed
Gause, WC, Wynn, TA and Allen, JE (2013) Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology 13, 607614.10.1038/nri3476CrossRefGoogle ScholarPubMed
Gazzinelli-Guimarães, PH, Gazzinelli-Guimarães, AC, Silva, FN, Mati, VLT, de Dhom-Lemos, LC, Barbosa, FS, Passos, LSA, Gaze, S, Carneiro, CM, Bartholomeu, DC, Bueno, LL and Fujiwara, RT (2013) Parasitological and immunological aspects of early Ascaris spp. infection in mice. International Journal for Parasitology 43, 697706.10.1016/j.ijpara.2013.02.009CrossRefGoogle ScholarPubMed
Gazzinelli-Guimarães, PH, Bonne-Année, S, Fujiwara, RT, Santiago, HC and Nutman, TB (2016) Allergic sensitization underlies hyperreactive antigen-specific CD4 + T cell responses in coincident filarial infection. The Journal of Immunology 197, 27722779.10.4049/jimmunol.1600829CrossRefGoogle ScholarPubMed
Gazzinelli-Guimarães, PH, de Freitas, LFD, Gazzinelli-Guimarães, AC, Coelho, F, Barbosa, FS, Nogueira, D, Amorim, C, de Dhom-Lemos, LC, Oliveira, LM, da Silveira, AB, da Fonseca, FG, Bueno, LL and Fujiwara, RT (2017) Concomitant helminth infection downmodulates the vaccinia virus-specific immune response and potentiates virus-associated pathology. International Journal for Parasitology 47, 110.10.1016/j.ijpara.2016.08.007CrossRefGoogle ScholarPubMed
Gazzinelli-Guimarães, AC, Gazzinelli-Guimarães, PH, Nogueira, DS, Oliveira, FMS, Barbosa, FS, Amorim, CCO, Cardoso, MS, Kraemer, L, Caliari, MV, Akamatsu, MA, Ho, PL, Jones, KM, Weatherhead, J, Bottazzi, ME, Hotez, PJ, Zhan, B, Bartholomeu, DC, Russo, RC, Bueno, LL and Fujiwara, RT (2018) IgG induced by vaccination with Ascaris suum extracts is protective against infection. Frontiers in Immunology 9, 2535.10.3389/fimmu.2018.02535CrossRefGoogle ScholarPubMed
Gazzinelli-Guimaraes, PH, De Queiroz Prado, R, Ricciardi, A, Bonne-Année, S, Sciurba, J, Karmele, EP, Fujiwara, RT and Nutman, TB (2019) Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. Journal of Clinical Investigation 129, 36863701.10.1172/JCI127963CrossRefGoogle ScholarPubMed
Gazzinelli-Guimarães, PH, Bennuru, S, de Queiroz Prado, R, Ricciardi, A, Sciurba, J, Kupritz, J, Moser, M, Kamenyeva, O and Nutman, T (2021) House dust mite sensitization drives cross-reactive immune responses to homologous helminth proteins. PLoS Pathogens 17, e1009337. doi: 10.1371/journal.ppat.1009337CrossRefGoogle ScholarPubMed
GBD 2015 DALYs and HALE Collaborators (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388, 16031658. doi: 10.1016/S0140-6736(16)31460-XCrossRefGoogle Scholar
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 390, 12111259. doi: 10.1016/S0140-6736(17)32154-2.CrossRefGoogle Scholar
GBD 2017 DALYs and HALE Collaborators (2018) Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392, 18591922. doi: 10.1016/S0140-6736(18)32335-3CrossRefGoogle Scholar
Gebreegziabiher, D, Desta, K, Howe, R and Abebe, M (2014) Helminth infection increases the probability of indeterminate quantiferon gold in tube results in pregnant women. BioMed Research International 2014, 364137. doi: 10.1155/2014/364137CrossRefGoogle ScholarPubMed
Geiger, SM, Massara, CL, Bethony, J, Soboslay, PT, Carvalho, OS and Corrêa-Oliveira, R (2002) Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients. Parasite Immunology 24, 499509.10.1046/j.1365-3024.2002.00600.xCrossRefGoogle ScholarPubMed
Gelpi, AP and Mustafa, A (1968) Ascaris pneumonia. The American Journal of Medicine 44, 377389.10.1016/0002-9343(68)90109-5CrossRefGoogle ScholarPubMed
Gharaee-Kermani, M, Nozaki, Y, Hatano, K and Phan, SH (2001) Lung interleukin-4 gene expression in a murine model of bleomycin-induced pulmonary fibrosis. Cytokine 15, 138147.10.1006/cyto.2001.0903CrossRefGoogle Scholar
Gieseck, RL, Wilson, MS and Wynn, TA (2018) Type 2 immunity in tissue repair and fibrosis. Nature Reviews Immunology 18, 6276.10.1038/nri.2017.90CrossRefGoogle ScholarPubMed
Guo, L, Huang, Y, Chen, X, Hu-Li, J, Urban, JF and Paul, WE (2015) Innate immunological function of T H2 cells in vivo. Nature Immunology 16, 10511059.10.1038/ni.3244CrossRefGoogle Scholar
Hartgers, FC and Yazdanbakhsh, M (2006) Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunology 28, 497506.10.1111/j.1365-3024.2006.00901.xCrossRefGoogle ScholarPubMed
Hartmann, W, Brunn, ML, Stetter, N, Gagliani, N, Muscate, F, Stanelle-Bertram, S, Gabriel, G and Breloer, M (2019) Helminth infections suppress the efficacy of vaccination against seasonal influenza. Cell Reports 29, 22432256.e4.10.1016/j.celrep.2019.10.051CrossRefGoogle ScholarPubMed
Hayes, KS, Bancroft, AJ and Grencis, RK (2007) The role of TNF-α in Trichuris muris infection I: influence of TNF-α receptor usage, gender and IL-13. Parasite Immunology 29, 575582.10.1111/j.1365-3024.2007.00979.xCrossRefGoogle ScholarPubMed
Hays, R, Pierce, D, Giacomin, P, Loukas, A, Bourke, P and McDermott, R (2020) Helminth coinfection and COVID-19: an alternate hypothesis. PLoS Neglected Tropical Diseases 14, e0008628.10.1371/journal.pntd.0008628CrossRefGoogle Scholar
Isobe, Y, Kato, T and Arita, M (2012) Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Frontiers in Immunology 3, 270.10.3389/fimmu.2012.00270CrossRefGoogle ScholarPubMed
Jackson, JA, Turner, JD, Rentoul, L, Faulkner, H, Behnke, JM, Hoyle, M, Grencis, RK, Else, KJ, Kamgno, J, Boussinesq, M and Bradley, JE (2004) T helper cell type 2 responsiveness predicts future susceptibility to gastrointestinal Nematodes in humans. The Journal of Infectious Diseases 190, 18041811.10.1086/425014CrossRefGoogle ScholarPubMed
Jarrett, E and Bazin, H (1974) Elevation of total serum IgE in rats following helminth parasite infection. Nature 251, 613614.10.1038/251613a0CrossRefGoogle ScholarPubMed
Jia, TW, Melville, S, Utzinger, J, King, CH and Zhou, XN (2012) Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoS Neglected Tropical Diseases 6, e1621. doi: 10.1371/journal.pntd.0001621CrossRefGoogle ScholarPubMed
Keiser, J and Utzinger, J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA – Journal of the American Medical Association 299, 19371948.10.1001/jama.299.16.1937CrossRefGoogle ScholarPubMed
Khoury, PB, Stromberg, BE and Soulsby, EJL (1977) Immune mechanisms to Ascaris suum in inbred Guinea pigs. I. Passive transfer of immunity by cells or serum. Immunology 32, 405411.Google ScholarPubMed
Kolářová, L, Skirnisson, K and Horák, P (1999) Schistosome cercariae as the causative agent of swimmer's itch in Iceland. Journal of Helminthology 73, 215220.10.1017/S0022149X99000335CrossRefGoogle ScholarPubMed
Kringel, H, Thamsborg, SM, Petersen, HH, Göring, HHH, Skallerup, P and Nejsum, P (2015) Serum antibody responses in pigs trickle-infected with Ascaris and Trichuris: Heritabilities and associations with parasitological findings. Veterinary Parasitology 211, 306311.10.1016/j.vetpar.2015.06.008CrossRefGoogle ScholarPubMed
Kunst, H, Mack, D, Kon, OM, Banerjee, AK, Chiodini, P and Grant, A (2011) Parasitic infections of the lung: a guide for the respiratory physician. Thorax 66, 528536.10.1136/thx.2009.132217CrossRefGoogle ScholarPubMed
Leask, A and Abraham, DJ (2004) TGF-β signaling and the fibrotic response. The FASEB Journal 18, 816827.10.1096/fj.03-1273revCrossRefGoogle ScholarPubMed
Le Hesran, JY, Akiana, J, Ndiaye, EHM, Dia, M, Senghor, P and Konate, L (2004) Severe malaria attack is associate with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Transactions of the Royal Society of Tropical Medicine and Hygiene 98, 397399.10.1016/j.trstmh.2003.10.009CrossRefGoogle Scholar
Leibovich, SJ and Ross, R (1976) A macrophage dependent factor that stimulates the proliferation of fibroblasts in vitro. American Journal of Pathology 84, 501514.Google ScholarPubMed
Leonardi-Bee, J, Pritchard, D and Britton, J (2006) Asthma and current intestinal parasite infection: systematic review and meta-analysis. American Journal of Respiratory and Critical Care Medicine 174, 514523.10.1164/rccm.200603-331OCCrossRefGoogle ScholarPubMed
Lewis, R, Behnke, JM, Cassidy, JP, Stafford, P, Murray, N and Holland, CV (2007) The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology 134, 13011314.10.1017/S0031182007002582CrossRefGoogle ScholarPubMed
Li, D, Guabiraba, R, Besnard, AG, Komai-Koma, M, Jabir, MS, Zhang, L, Graham, GJ, Kurowska-Stolarska, M, Liew, FY, McSharry, C and Xu, D (2014) IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. Journal of Allergy and Clinical Immunology 134, 14221432.e11.10.1016/j.jaci.2014.05.011CrossRefGoogle ScholarPubMed
Liu, T, De Los Santos, FG and Phan, SH (2017) The bleomycin model of pulmonary fibrosis. In Methods in Molecular Biology. New York, NY: Humana Press Inc, pp. 2742. doi: 10.1007/978-1-4939-7113-8_2.Google Scholar
Lustigman, S, Prichard, RK, Gazzinelli, A, Grant, WN, Boatin, BA, McCarthy, JS and Basáñez, M-G (2012) A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Neglected Tropical Diseases 6, e1582.10.1371/journal.pntd.0001582CrossRefGoogle ScholarPubMed
Lyke, KE, Dabo, A, Sangare, L, Arama, C, Daou, M, Diarra, I, Plowe, CV, Doumbo, OK and Sztein, MB (2006) Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infection and Immunity 74, 57185724.10.1128/IAI.01822-05CrossRefGoogle ScholarPubMed
Marbella, CO and Gaafar, SM (1989) Production and distribution of immunoglobulin-bearing cells in the intestine of young pigs infected with Ascaris suum. Veterinary Parasitology 34, 6370.10.1016/0304-4017(89)90165-9CrossRefGoogle ScholarPubMed
Martin, P and Leibovich, SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in Cell Biology 15, 599607.10.1016/j.tcb.2005.09.002CrossRefGoogle ScholarPubMed
Masure, D, Vlaminck, J, Wang, T, Chiers, K, Van den Broeck, W, Vercruysse, J and Geldhof, P (2013) A role for eosinophils in the intestinal immunity against infective Ascaris suum Larvae. PLoS Neglected Tropical Diseases 7, e2138.10.1371/journal.pntd.0002138CrossRefGoogle ScholarPubMed
McCoy, KD, Stoel, M, Stettler, R, Merky, P, Fink, K, Senn, BM, Schaer, C, Massacand, J, Odermatt, B, Oettgen, HC, Zinkernagel, RM, Bos, NA, Hengartner, H, Macpherson, AJ and Harris, NL (2008) Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host and Microbe 4, 362373.10.1016/j.chom.2008.08.014CrossRefGoogle ScholarPubMed
McSharry, C, Xia, Y, Holland, CV and Kennedy, MW (1999) Natural immunity to Ascaris lumbricoides associated with immunoglobulin E antibody to ABA-1 allergen and inflammation indicators in children. Infection and Immunity 67, 484489.10.1128/IAI.67.2.484-489.1999CrossRefGoogle ScholarPubMed
Mejer, H and Roepstorff, A (2006) Ascaris suum infections in pigs born and raised on contaminated paddocks. Parasitology 133, 305312.10.1017/S0031182006000394CrossRefGoogle ScholarPubMed
Mhimbira, F, Hella, J, Said, K, Kamwela, L, Sasamalo, M, Maroa, T, Chiryamkubi, M, Mhalu, G, Schindler, C, Reither, K, Knopp, S, Utzinger, J, Gagneux, S and Fenner, L (2017) Prevalence and clinical relevance of helminth co-infections among tuberculosis patients in urban Tanzania. PLoS Neglected Tropical Diseases 11, e0005342. doi: 10.1371/journal.pntd.0005342CrossRefGoogle ScholarPubMed
Minutti, CM, Knipper, JA, Allen, JE and Zaiss, DMW (2017) Tissue-specific contribution of macrophages to wound healing. Seminars in Cell and Developmental Biology 61, 311.10.1016/j.semcdb.2016.08.006CrossRefGoogle ScholarPubMed
Mkhize-Kwitshana, ZL, Taylor, M, Jooste, P, Mabaso, MLH and Walzl, G (2011) The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa. BMC Infectious Diseases 11, 273.10.1186/1471-2334-11-273CrossRefGoogle ScholarPubMed
Mkhize-Kwitshana, ZL, Mabaso, ML and Walzl, G (2014) Proliferative capacity and cytokine production by cells of HIV-infected and uninfected adults with different helminth infection phenotypes in South Africa. BMC Infectious Diseases 14, 499.10.1186/1471-2334-14-499CrossRefGoogle ScholarPubMed
Moser, W, Schindler, C and Keiser, J (2017) Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ 358, 4307.10.1136/bmj.j4307CrossRefGoogle ScholarPubMed
Murray, J, Murray, A, Murray, M and Murray, C (1978) The biological suppression of malaria: an ecological and nutritional interrelationship of a host and two parasites. The American Journal of Clinical Nutrition 31, 13631366.10.1093/ajcn/31.8.1363CrossRefGoogle ScholarPubMed
Murray, KA, Preston, N, Allen, T, Zambrana-Torrelio, C, Hosseini, PR and Daszak, P (2015) Global biogeography of human infectious diseases. Proceedings of the National Academy of Sciences of the United States of America 112, 1274612751.10.1073/pnas.1507442112CrossRefGoogle ScholarPubMed
Mwangi, TW, Bethony, JM and Brooker, S (2006) Malaria and helminth interactions in humans: an epidemiological viewpoint. Annals of Tropical Medicine and Parasitology 100, 551570.10.1179/136485906X118468CrossRefGoogle Scholar
Nacher, M (2011) Interactions between worms and malaria: good worms or bad worms? Malaria Journal 10, 259.10.1186/1475-2875-10-259CrossRefGoogle ScholarPubMed
Nacher, M, Gay, F, Singhasivanon, P, Krudsood, S, Treeprasertsuk, S, Mazier, D, Vouldoukis, I and Looareesuwan, S (2000) Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunology 22, 107113.10.1046/j.1365-3024.2000.00284.xCrossRefGoogle ScholarPubMed
Nacher, M, Singhasivanon, P, Silachamroon, U, Treeprasertsuk, S, Vannaphan, S, Traore, B, Gay, F and Looareesuwan, S (2001) Helminth infections are associated with protection from malaria-related acute renal failure and jaundice in Thailand. American Journal of Tropical Medicine and Hygiene 65, 834836.10.4269/ajtmh.2001.65.834CrossRefGoogle ScholarPubMed
Nacher, M, Singhasivanon, P, Yimsamran, S, Manibunyong, W, Thanyavanich, N, Wuthisen, P and Looareesuwan, S (2002) Intestinal helminth infections are associated with increased incidence of plasmodium falciparum malaria in Thailand. Journal of Parasitology 88, 5558.10.1645/0022-3395(2002)088[0055:IHIAAW]2.0.CO;2CrossRefGoogle ScholarPubMed
Nejsum, P, Parker, ED, Frydenberg, J, Roepstorff, A, Boes, J, Haque, R, Astrup, I, Prag, J and Skov Sørensen, UB (2005) Ascariasis is a zoonosis in Denmark. Journal of Clinical Microbiology 43, 11421148.10.1128/JCM.43.3.1142-1148.2005CrossRefGoogle ScholarPubMed
Nejsum, P, Thamsborg, SM, Petersen, HH, Kringel, H, Fredholm, M and Roepstorff, A (2009a) Population dynamics of Trichuris suis in trickle-infected pigs. Parasitology 136, 691697.10.1017/S0031182009005976CrossRefGoogle Scholar
Nejsum, P, Thamsborg, SM, Petersen, HH, Kringel, H, Fredholm, M and Roepstorff, A (2009b) Population dynamics of Ascaris suum in trickle-infected pigs. Journal of Parasitology 95, 10481053.10.1645/GE-1987.1CrossRefGoogle Scholar
Nogueira, DS, Gazzinelli-Guimarães, PH, Barbosa, FS, Resende, NM, Silva, CC, de Oliveira, LM, Amorim, CCO, Oliveira, FMS, Mattos, MS, Kraemer, LR, Caliari, MV, Gaze, S, Bueno, LL, Russo, RC and Fujiwara, RT (2016) Multiple exposures to Ascaris suum induce tissue injury and mixed Th2/Th17 immune response in mice. 10, e0004382.10.1371/journal.pntd.0004382CrossRefGoogle Scholar
Nutman, TB (2007) Evaluation and differential diagnosis of marked, persistent eosinophilia. Immunology and Allergy Clinics of North America 27, 529549.10.1016/j.iac.2007.07.008CrossRefGoogle ScholarPubMed
Oliveira, FM, Hemanoel da Paixão Matias, P, Kraemer, L, Clara Gazzinelli-Guimarães, A, Vieira Santos, F, Cássia Oliveira Amorim, C, Silva Nogueira, D, Simões Freitas, C, Vidigal Caliari, M, Castanheira Bartholomeu, D, Lacerda Bueno, L, Castro Russo, RI and Toshio Fujiwara, RI (2019) Comorbidity associated to Ascaris suum infection during pulmonary fibrosis exacerbates chronic lung and liver inflammation and dysfunction but not affect the parasite cycle in mice. PLOS Neglected Tropical Diseases 13, e0007896. doi: 10.1371/journal.pntd.0007896CrossRefGoogle Scholar
Osakunor, DNM, Sengeh, DM and Mutapi, F (2018) Coinfections and comorbidities in african health systems: at the interface of infectious and noninfectious diseases. PLoS Neglected Tropical Diseases 12, e0006711. doi: 10.1371/journal.pntd.0006711CrossRefGoogle ScholarPubMed
Ottesen, EA and Nutman, TB (1992) Tropical pulmonary eosinophilia. Annual Review of Medicine 43, 417424.10.1146/annurev.me.43.020192.002221CrossRefGoogle ScholarPubMed
Pullan, RL, Smith, JL, Jasrasaria, R and Brooker, SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites and Vectors 7, 37.10.1186/1756-3305-7-37CrossRefGoogle ScholarPubMed
Qualizza, R, Losappio, LM and Furci, F (2018) A case of atopic dermatitis caused by Ascaris lumbricoides infection. Clinical and Molecular Allergy 16, 10.10.1186/s12948-018-0088-5CrossRefGoogle ScholarPubMed
Raghow, R (1991) Role of transforming growth factor-β in repair and fibrosis. In Chest. Amsterdam: Elsevier, pp. 61S65S. doi: 10.1378/chest.99.3_Supplement.61S.Google Scholar
Rakita, RM, White, AC and Kielhofner, MA (1993) Loa loa infection as a cause of migratory angioedema: report of three cases from the texas medical center. Clinical Infectious Diseases 17, 691694.10.1093/clinids/17.4.691CrossRefGoogle ScholarPubMed
Ramalingam, TR, Pesce, JT, Sheikh, F, Cheever, AW, Mentink-Kane, MM, Wilson, MS, Stevens, S, Valenzuela, DM, Murphy, AJ, Yancopoulos, GD, Urban, JF, Donnelly, RP and Wynn, TA (2008) Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor α1 chain. Nature Immunology 9, 2533.10.1038/ni1544CrossRefGoogle ScholarPubMed
Resende, NM, Gazzinelli-Guimarães, PH, Barbosa, FS, Oliveira, LM, Nogueira, DS, Gazzinelli-Guimarães, AC, Gonçalves, MTP, Amorim, CCO, Oliveira, FMS, Caliari, MV, Rachid, MA, Volpato, GT, Bueno, LL, Geiger, SM and Fujiwara, RT (2015) New insights into the immunopathology of early toxocara canis infection in mice. Parasites and Vectors 8, 354.10.1186/s13071-015-0962-7CrossRefGoogle ScholarPubMed
Rosenberg, HF, Dyer, KD and Foster, PS (2013) Eosinophils: changing perspectives in health and disease. Nature Reviews Immunology 13, 922.10.1038/nri3341CrossRefGoogle ScholarPubMed
Rotman, HL, Yutanawiboonchai, W, Brigandi, RA, Leon, O, Gleich, GJ, Nolan, TJ, Schad, GA and Abraham, D (1996) Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Experimental Parasitology 82, 267278.10.1006/expr.1996.0034CrossRefGoogle ScholarPubMed
Roy, A, Eisenhut, M, Harris, RJ, Rodrigues, LC, Sridhar, S, Habermann, S, Snell, L, Mangtani, P, Adetifa, I, Lalvani, A and Abubakar, I (2014) Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349, g4643. doi: 10.1136/bmj.g4643CrossRefGoogle ScholarPubMed
Russo, RC, Guabiraba, R, Garcia, CC, Barcelos, LS, Roffê, E, Souza, ALS, Amaral, FA, Cisalpino, D, Cassali, GD, Doni, A, Bertini, R and Teixeira, MM (2009) Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. American Journal of Respiratory Cell and Molecular Biology 40, 410421.10.1165/rcmb.2007-0364OCCrossRefGoogle ScholarPubMed
Russo, RC, Alessandri, AL, Garcia, CC, Cordeiro, BF, Pinho, V, Cassali, GD, Proudfoot, AEI and Teixeira, MM (2011) Therapeutic effects of evasin-1, a chemokine binding protein, in bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology 45, 7280.10.1165/rcmb.2009-0406OCCrossRefGoogle ScholarPubMed
Saito, F, Tasaka, S, Inoue, KI, Miyamoto, K, Nakano, Y, Ogawa, Y, Yamada, W, Shiraishi, Y, Hasegawa, N, Fujishima, S, Takano, H and Ishizaka, A (2008) Role of interleukin-6 in bleomycin-induced lung inflammatory changes in mice. American Journal of Respiratory Cell and Molecular Biology 38, 566571.10.1165/rcmb.2007-0299OCCrossRefGoogle ScholarPubMed
Salgame, P, Yap, GS and Gause, WC (2013) Effect of helminth-induced immunity on infections with microbial pathogens. Nature Immunology 14, 11181126.10.1038/ni.2736CrossRefGoogle ScholarPubMed
Santiago, HC, Bennuru, S, Boyd, A, Eberhard, M and Nutman, TB (2011) Structural and immunologic cross-reactivity among filarial and mite tropomyosin: implications for the hygiene hypothesis. Journal of Allergy and Clinical Immunology 127, 479486.10.1016/j.jaci.2010.11.007CrossRefGoogle ScholarPubMed
Santos, ABR, Rocha, GM, Oliver, C, Ferriani, VPL, Lima, RC, Palma, MS, Sales, VSF, Aalberse, RC, Chapman, MD and Arruda, LK (2008) Cross-reactive IgE antibody responses to tropomyosins from Ascaris lumbricoides and cockroach. Journal of Allergy and Clinical Immunology 121, 10401046. doi: 10.1016/j.jaci.2007.12.1147CrossRefGoogle ScholarPubMed
Santos, JHA, Bührer-Sékula, S, Melo, GC, Cordeiro-Santos, M, Pimentel, JPD, Gomes-Silva, A, Costa, AG, Saraceni, V, Da-Cruz, AM and Lacerda, MVG (2019) Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Revista da Sociedade Brasileira de Medicina Tropical 52:e20190315. doi: 10.1590/0037-8682-0315-2019.Google Scholar
Satoguina, JS, Weyand, E, Larbi, J and Hoerauf, A (2005) T regulatory-1 cells induce IgG4 production by B cells: role of IL-10. The Journal of Immunology 174, 47184726.10.4049/jimmunol.174.8.4718CrossRefGoogle Scholar
Sereda, MJ, Hartmann, S and Lucius, R (2008) Helminths and allergy: the example of tropomyosin. Trends in Parasitology 24, 272278.10.1016/j.pt.2008.03.006CrossRefGoogle ScholarPubMed
Sohn, WM, Zhang, H, Choi, MH and Hong, ST (2006) Susceptibility of experimental animals to reinfection with Clonorchis sinensis. The Korean Journal of Parasitology 44, 163166.10.3347/kjp.2006.44.2.163CrossRefGoogle ScholarPubMed
Spiegel, A, Tall, A, Raphenon, G, Trape, J-F and Druilhe, P (2003) Increased frequency of malaria attacks in subjects co-infected by intestinal worms and Plasmodium falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 198199.10.1016/S0035-9203(03)90117-9CrossRefGoogle ScholarPubMed
Steenhard, NR, Jungersen, G, Kokotovic, B, Beshah, E, Dawson, HD, Urban, JF, Roepstorff, A and Thamsborg, SM (2009) Ascaris suum infection negatively affects the response to a Mycoplasma hyopneumoniae vaccination and subsequent challenge infection in pigs. Vaccine 27, 51615169.10.1016/j.vaccine.2009.05.075CrossRefGoogle ScholarPubMed
Suzuki, M, Hara, M, Ichikawa, S, Kamijo, S, Nakazawa, T, Hatanaka, H, Akiyama, K, Ogawa, H, Okumura, K and Takai, T (2016) Presensitization to Ascaris antigens promotes induction of mite-specific IgE upon mite antigen inhalation in mice. Allergology International 65, 4451.10.1016/j.alit.2015.07.003CrossRefGoogle ScholarPubMed
Thamsborg, SM, Nejsum, P and Mejer, H (2013) Impact of Ascaris suum in livestock. In Ascaris: The Neglected Parasite. Amsterdam: Elsevier Inc, pp. 363381. doi: 10.1016/B978-0-12-396978-1.00014-8.CrossRefGoogle Scholar
Togarsimalemath, SK, Pushpamithran, G, Schön, T, Stendahl, O and Blomgran, R (2020) Helminth antigen exposure enhances early immune control of mycobacterium tuberculosis in monocytes and macrophages. Journal of Innate Immunity 17, 116. doi: 10.1159/000512279Google Scholar
Tshikuka, JG, Scott, ME, Gray-Donald, K and Kalumba, ON (1996) Multiple infection with Plasmodium and helminths in communities of low and relatively high socio-economic status. Annals of Tropical Medicine and Parasitology 90, 277293.10.1080/00034983.1996.11813053CrossRefGoogle ScholarPubMed
Urban, JF (1982) Cellular basis of the non-specific potentiation of the immunoglobulin E response after helminth parasite infection. Veterinary Parasitology 10, 131140.10.1016/0304-4017(82)90019-XCrossRefGoogle ScholarPubMed
Urban, JR and Tromba, FG (1984) An ultraviolet-attenuated egg vaccine for swine ascariasis: parameters affecting the development of protective immunity. American Journal of Veterinary Research 45, 21042108.Google ScholarPubMed
Urban, JF, Alizadeh, H and Romanowski, RD (1988) Ascaris suum: development of intestinal immunity to infective second-stage larvae in swine. Experimental Parasitology 66, 6677.10.1016/0014-4894(88)90051-3CrossRefGoogle ScholarPubMed
Van Dellen, RG (1985) Loa loa. An unusual case of chronic urticaria and angioedema in the United States. JAMA 253, 1924.10.1001/jama.1985.03350370120036CrossRefGoogle ScholarPubMed
Van Den Biggelaar, AHJ, Van Ree, R, Rodrigues, LC, Lell, B, Deelder, AM, Kremsner, PG and Yazdanbakhsh, M (2000) Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356, 17231727.10.1016/S0140-6736(00)03206-2CrossRefGoogle ScholarPubMed
Van Den Biggelaar, AHJ, Lopuhaa, C, Van Ree, R, Van Der Zee, JS, Jans, J, Hoek, A, Migombet, B, Borrmann, S, Luckner, D, Kremsner, PG and and Yazdanbakhsh, M (2001) The prevalence of parasite infestation and house dust mite sensitization in gabonese schoolchildren. International Archives of Allergy and Immunology 126, 231238.10.1159/000049519CrossRefGoogle ScholarPubMed
Van Dyken, SJ and Locksley, RM (2013) Interleukin-4-and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annual Review of Immunology 31, 317343.10.1146/annurev-immunol-032712-095906CrossRefGoogle ScholarPubMed
Walson, JL, Otieno, PA, Mbuchi, M, Richardson, BA, Lohman-Payne, B, MacHaria, SW, Overbaugh, J, Berkley, J, Sanders, EJ, Chung, MH and John-Stewart, GC (2008) Albendazole treatment of HIV-1 and helminth co-infection: a randomized, double-blind, placebo-controlled trial. AIDS (London, England) 22, 16011609.10.1097/QAD.0b013e32830a502eCrossRefGoogle ScholarPubMed
Walters, DM and Kleeberger, SR (2008) Mouse models of bleomycin-induced pulmonary fibrosis. Current Protocols in Pharmacology Chapter 5. Unit 5.46. doi: 10.1002/0471141755.ph0546s40.CrossRefGoogle ScholarPubMed
Weatherhead, JE, Porter, P, Coffey, A, Haydel, D, Versteeg, L, Zhan, B, Guimarães, ACG, Fujiwara, R, Jaramillo, AM, Bottazzi, ME, Hotez, PJ, Corry, DB and Beaumiera, CM (2018) Ascaris larval infection and lung invasion directly induce severe allergic airway disease in mice. Infection and Immunity 86, 533551.10.1128/IAI.00533-18CrossRefGoogle ScholarPubMed
Weatherhead, JE, Gazzinelli-Guimaraes, P, Knight, JM, Fujiwara, R, Hotez, PJ, Bottazzi, ME and Corry, DB (2020) Host immunity and inflammation to pulmonary helminth infections. Frontiers in Immunology 11, 2733.10.3389/fimmu.2020.594520CrossRefGoogle ScholarPubMed
WHO (2011) Helminth control in school-age children Second edition A guide for managers of control programmes.Google Scholar
WHO (2015) Inversting to overcome the global impact of neglected tropical diseases.Google Scholar
WHO (2019) WHO | Preventive chemotherapy to control soil-transmitted helminth infections in at-risk population groups. WHO.Google Scholar
Wilson, MS and Wynn, TA (2009) Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunology 2, 103121.10.1038/mi.2008.85CrossRefGoogle ScholarPubMed
Wilson, MS, Madala, SK, Ramalingam, TR, Gochuico, BR, Rosas, IO, Cheever, AW and Wynn, TA (2010) Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. Journal of Experimental Medicine 207, 535552.10.1084/jem.20092121CrossRefGoogle ScholarPubMed
Wynn, TA (2004) Fibrotic disease and the TH1/TH2 paradigm. Nature Reviews Immunology 4, 583594.10.1038/nri1412CrossRefGoogle Scholar
Yazdanbakhsh, M and Wahyuni, S (2005) The role of helminth infections in protection from atopic disorders. Current Opinion in Allergy and Clinical Immunology 5, 386391.10.1097/01.all.0000182541.52971.ebCrossRefGoogle ScholarPubMed
Yu, JR, Hong, ST, Chai, JY and Lee, SH (1995) The effect of reinfection with Neodiplostomum seoulensis on the histopathology and activities of brush border membrane bound enzymes in the rat small intestine. The Korean Journal of Parasitology 33, 37.10.3347/kjp.1995.33.1.37CrossRefGoogle ScholarPubMed
Zubrinich, CM, Puy, RM, O'Hehir, RE and Hew, M (2019) Strongyloides infection as a reversible cause of chronic urticaria. Journal of Asthma and Allergy 12, 6769.10.2147/JAA.S167292CrossRefGoogle ScholarPubMed