Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T19:39:55.000Z Has data issue: false hasContentIssue false

Host immune response and pathological expression in malaria: possible implications for malaria vaccines

Published online by Cambridge University Press:  23 August 2011

G. E. Grau
Affiliation:
World Health Organization Immunology Research and Training Centre, Department of Pathology, University of Geneva, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
G. Del Giudice
Affiliation:
World Health Organization Immunology Research and Training Centre, Department of Pathology, University of Geneva, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
P.-H. Lambert
Affiliation:
World Health Organization Immunology Research and Training Centre, Department of Pathology, University of Geneva, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland

Extract

Recent progress in parasite immunobiology has led to the identification of several plasmodial antigens representing the target of the protective antibody response of the infected host. As a consequence, some of these antigens have been envisaged as potential malaria vaccines in man. However, in spite of these achievements, the fine mechanisms which lead to the development of a state of partial protective immunity or to the triggering of immunopathology during malaria infection are not yet fully understood. Thus, it may be appropriate to evaluate the relative importance of individual host immune responsiveness to parasite epitopes involved in the induction of immunity, or of some immunologically mediated adverse reactions such as glomerulonephritis, anaemia, thrombocytopenia, and cerebral syndrome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, C.Genitkau, M., Gougerot-Pocidalo, M., Verroust, P., Lebras, J., Gibert, C. & Morel-Maroger, L. (1981). Cryoglobulins, circulating immune complexes and complement activation in cerebral malaria. Infection and Immunity 31, 530–5.CrossRefGoogle ScholarPubMed
Aikawa, M.. Suzuki, M. & Gutierrez, Y. (1980). Pathology of malaria. In Malaria, vol. 3, (ed. Kreier, J. P.). pp. 47102. New York: Academic Press.Google Scholar
Areekul, S.. Kasemsuth, R. & Kanakakorn, K. (1984). Studies on the transcapillary escape rate of fibrinogen and capillary permeability in patients with Plasmodium falciparum malaria. Tropical and Geographical Medicine 36. 151–7.Google ScholarPubMed
Ballou, W. R., Rothbard, J., Wirtz, R. A., Gordon, D. M., Williams, J. L., GORE, R. W., Schneider, I., Hollingdale, M. R., Beaudoin, R. L., Maloy, W. L., Miller, L. H. & Hock-Meyer, W. T. (1985). Immunogenicity of synthetic peptides from circumsporozoite proteins of Plasmodium falciparum. Science 228, 996–9.CrossRefGoogle ScholarPubMed
Beale, P. J., Cormack, J. D. & Oldrey, T. B. N. (1972). Thrombocytopenia in malaria with immunoglobulin (IgM) changes. British Medical Journal 1, 345–9.CrossRefGoogle ScholarPubMed
Borochowitz, D., Crosley, A. L. & Metz, J. (1970). Disseminated intravascular coagulation with fatal haemorrhage in cerebral malaria. British Medical Journal 2, 710.CrossRefGoogle Scholar
Borel, J. F., Feurer, C, Magnee, C. & Staehelin, H. (1977). Effects of the new antilymphocyte peptide Cyclosporin A in animals. Immunology 32, 1017–25.Google ScholarPubMed
Bunjes, D., Hardt, C, Rollinghoff, M. & Wagner, H. (1981). Cyclosporin A mediates immuno-suppression of primary cytotoxic T-cell responses by impairing the release of interleukin 1 and interleukin 2. European Journal of Immunology 11, 657–61.CrossRefGoogle Scholar
Butler, T., Tong, M. J., Fletscher, J. R., Dostalek, R. J. & Robbins, T. O. (1973). Blood coagulation studies in Plasmodium falciparum malaria. American Journal of Medical Sciences 265. 63–7.CrossRefGoogle ScholarPubMed
Chan, P. H., Schmidley, J. W., Fishman, R. A. & Longar, S. M. (1984). Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34, 315–20.CrossRefGoogle ScholarPubMed
Clark, I. A. & Hunt, N. H. (1983). Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infection and Immunity 39, 16.CrossRefGoogle ScholarPubMed
Clark, I. A., Hunt, N. H. & Cowden, W. B. (1987). Immunopathology of malaria. In Immunology, Immunopathology and Immunoprophylaxis of Parasite Infections (ed. Soulsby, E. J. L.). CRC Press, (in the Press.)Google Scholar
Cochrane, A. H., Nussenzweig, R. S. & Nardin, E. H. (1980). Immunization against sporozoites. In Malaria, vol. 3, (ed. Kreier, J. P.), pp. 163202. New York: Academic Press.CrossRefGoogle Scholar
Coeugniet, E. (1979). Thrombocyte migration inhibitory activity of Concanavalin A-stimulated human lymphocytes. In vivo and in vitro modifications by dipyridamole and acetylsalicylic acid. Thrombosis Research 15, 297307.CrossRefGoogle ScholarPubMed
Contreras, C. E., June, C. H., Perrin, L. H. & Lambert, P. H. (1980). Immunopathological aspects of Plasmodium berghei infection in five strains of mice. I. Immune complexes and other serological features during the infection. Clinical and Experimental Immunology 42, 403–11.Google ScholarPubMed
Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L. & Miller, L. H. (1984). Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225, 593–9.CrossRefGoogle Scholar
Del Giudice, G., Verdini, A. S., Pinori, M., Pessi, A., Verhave, J.-P., Tougne, C.Ivanoff, C.Lambert, P.-H. & Engers, H. D. (1986a). Detection of human antibodies against Plasmodium falciparum sporozoites using synthetic peptides. Journal of Clinical Microbiology 25, (in the Press).Google Scholar
Del Giudice, G., Engers, H. D., Tougne, C, Biro, S. S., Weiss, N., Verdini, A. S., Pessi, A., Degremont, A. A., Freyvogel, T. A.. Lambert, P.-H. & Tanner, M. (1986b). Antibodies to the repetitive epitope of Plasmodium falciparum circumsporozoite protein in rural Tanzanian community: a longitudinal study of 132 children. American Journal of Tropical Medicine and Hygiene 36, (in the Press).Google Scholar
Del Giudice, G.. Cooper, J. A., Merino, J., Verdini, A. S., Pessi, A., Togna, A. R., Engers, H. D.. Corradin, G. & Lambert, P.-H. (1986c). The antibody response in mice to carrier-free synthetic-polymers of Plasmodium falciparum circumsporozoite repetitive epitope is I-Ab restricted: implications for malaria vaccines. Journal of Immunology 137 (in the Press).Google ScholarPubMed
Dennis, L. H., Eichelberger, J. W., Inman, M. M. & Conrad, M. E. (1967). Depletion of coagulation factors in drug-resistant Plasmodium falciparum malaria. Blood 29, 713–21.Google ScholarPubMed
Depierreux, M., Hochmann, A., Herrera, S. & Lambert, P. H. (1986). Increased blood brain barrier permeability during cerebral malaria in rats. Correlation with immunological and histological features. Parasite Immunology (In the Press).Google Scholar
Drager-Dayal, R. & Lambert, P. H. (1986). Plasmodial antigens implicated in the protective immune response. In Textbook of Malaria, (ed. McGregor, I. and Wernsdorfer, W.). Churchill Livingston. (In the Press).Google Scholar
Edington, G. M. (1967). Pathology of malaria in West Africa. British Medical Journal 1. 715–18.CrossRefGoogle ScholarPubMed
Elliott, J., Lin, Y., Mizel, S., Bleackley, R., Harnish, D. & Paetkau, V. (1984). Induction of interleukin 2 messenger RNA inhibited by Cyclosporin A. Science 226. 1439–41.CrossRefGoogle ScholarPubMed
Enea, V., Ellis, J., Zavala, F., Arnot, D. E., Asanavich, A., Masuda, A., Quakyi, I. & Nussenzweig, R. S. (1984). DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science, 225, 628–30.CrossRefGoogle ScholarPubMed
Fajardo, L. F. (1973). Malarial parasites in mammalian platelets. Nature, London 243. 298.CrossRefGoogle ScholarPubMed
Fajardo, L. F. (1979). The role of platelets in infections. I. Observations in human and murine malaria. Archives of Pathology and Laboratory Medicine 103, 131–4.Google ScholarPubMed
Fajardo, L. F. & Tallent, C. (1974). Malarial parasites within human platelets. Journal of the American Medical Association 229, 1205–7.CrossRefGoogle Scholar
Finley, R. W., Mackey, L. A. & Lambert, P. H. (1982). Virulent P. berghei malaria: prolonged survival and decreased cerebral pathology in T cell-deficient nude mice. Journal of Immunology 129, 2213–18.CrossRefGoogle Scholar
Gengozian, N. & Rice, D. T. (1982). Antibody-dependent cellular cytotoxicity with platelets as the target cell: potential application to the study of immune thrombocytopenia. Clinical and Experimental Immunology 47, 431–6.Google Scholar
Granelli-Piperno, A., Inaba, K. & Steinman, R. (1984). Stimulation of lymphokine release from T lymphocytes. Requirement for mRNA synthesis and inhibition by Cyclosporin A. Journal of Experimental Medicine 160, 1792–802.CrossRefGoogle Scholar
Grau, G. E., Piguet, P. F.. Engers, H. D., Louis, J. A., Vassalli, P. & Lambert, P. H. (1986). L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. Journal of Immunology 137, 2348–54.CrossRefGoogle Scholar
Good, M. F., Berzofsky, J. A., Maloy, W. L., Hayashi, Y., Fujii, N., Hockmeyer, N. T. & Miller, L. H. (1986). Genetic control of the immune response in mice to a Plasmodium falciparum sporozoite vaccine. Widespread nonresponsiveness to single malaria T epitope in highly repetitive vaccine. Journal of Experimental Medicine 164, 655–60.CrossRefGoogle ScholarPubMed
Herold, K. C., Lancki, D. W., Moldwin, R. L. & Fitch, F. W. (1986). Immunosuppressive effects of Cyclosporin A on cloned T cells. Journal of Immunology 136, 1315–21.CrossRefGoogle ScholarPubMed
Hoffman, S. L., Wistar, R. JR., Ballou, W. R., Hollingdale, M. R., Wirtz, R. A., Schneider, I., Marwoto, H. A. & Hockmeyer, W. T. (1986). Immunity to malaria and naturally acquired antibodies to the circumsporozoite protein of Plasmodium falciparum. New England Journal of Medicine 315, 601–6.CrossRefGoogle Scholar
Horstmann, R. D., Dietrich, M., Bienzle, U. & Rasche, H. (1981). Malaria-induced thrombocytopenia. Blut 42, 157–64.CrossRefGoogle ScholarPubMed
Jerusalem, C., Polder, T., Wijers-Rouw, , Heinen, U., Eling, W., Osunkoya, B. O. & Trinh, P. (1983). Comparative clinical and experimental study on the pathogenesis of cerebral malaria. Contributions to Microbiology and Immunology 7, 130–8.Google Scholar
Kelton, J. G. & Gibbons, S. (1982). Autoimmune platelet destruction: Idiopathic Thrombocytopenic Purpura. Seminars in Thrombosis and Haemostasis 8, 83104.CrossRefGoogle ScholarPubMed
Kelton, J. G., Keystone, J., Moore, J., Denomme, G., Tozman, E., Glynn, M., Neame, P. B. & Gauldie, J. (1983). Immune-mediated thrombocytopenia of malaria. Journal of Clinical Investigation 71. 832–6.CrossRefGoogle ScholarPubMed
Kelton, J. G., Keystone, J., Proctor, E. & Neame, P. (1980). Malaria-induced immune thrombocytopenia. Sixteenth Congress of the International Society of Haematology, Abstract 1494.Google Scholar
Knisely, M. H. (1961). The settling of sludge during life. First observations, evidences and significances. A contribution to the biophysics of disease. Acta Anatomica 44, 164.CrossRefGoogle Scholar
Kronke, M.. Leonard, W. J., Depper, J. M., Aryua, S. K. & Wong-Staal, F. (1984). Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proceedings of the National Academy of Sciences. USA 81, 5214–18.CrossRefGoogle ScholarPubMed
Larsson, E. L. (1980). Cyclosporin A and dexamethasone suppress T-cell responses by selectively acting at distinct sites of the triggering process. Journal of Immunology 124, 2828–33.CrossRefGoogle ScholarPubMed
Looaresuwan, S., Wareell., D. A., White, N. J., Sutharasamai, P., Chanthavanich, P., Sundaravej, K.. Juel-Jensen, B. E.. Bunnag, D. & Harinasuta, T. (1983). Do patients with cerebral malaria have cerebral oedema? A computed tomography study. Lancet i, 434–7.CrossRefGoogle Scholar
McFarlane, H. (1971). Cell-mediated immunity in protein calorie malnutrition. Lancet ii, 1146–7.CrossRefGoogle Scholar
McIntyre, K. R. & Seidman, J. G. (1984). Nucleotide sequence of mutant I-A betabm12 gene is evidence for genetic exchange between mouse immune response genes. Nature, London 308, 551–3.CrossRefGoogle Scholar
McMurray, D. X. (1984). Cell-mediated immunity in nutritional deficiency. Progress in Food and Nutritional Sciences 8. 193228.Google ScholarPubMed
McPherson, G. G., Warrell, M. J., White, N. J., Looaresuwan, S. & Warrell, D. A. (1985). Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. American Journal of Pathology 119, 385401.Google Scholar
Mazier, D., Mellouk, S.. Beaudoin, R. L., Texier, B., Druilhe, P., Hockmeyer, W., Trosper, J., Paul, C, Charoenvit, Y., Young, J., Miltgen, F., Chedid, L., Chigot, J. P., Galley, B.. Brandicourt, O. & Gentilini, M. (1986). Effect of antibodies to recombinant and synthetic peptides on P. falciparum sporozoitesin vitro. Science 231, 156–9.CrossRefGoogle Scholar
Nardin, E. H., Nussenzweig, R. S., Mcgregor, I. A. & Bryan, J. H. (1979). Antibodies to sporozoites: their frequent occurrence in individuals in an area of hyperendemic malaria. Science 206, 597–9.CrossRefGoogle Scholar
Nawroth, P. P., Bank, I., Handley, D., Cassimeris, J., Chess, L. & Stern, D. (1986). Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce the release of interleukin 1. Journal of Experimental Medicine 163, 1363–75.CrossRefGoogle ScholarPubMed
Nickell, S. P., Scheibel, L. W. & Cole, G. A. (1982). Inhibition by Cyclosporin A of rodent malaria in vivo and human malaria in vitro. Infection and Immunity 37, 1093–100.CrossRefGoogle ScholarPubMed
Nussenzweig, V. & Nussenzweig, R. S. (1985). Circumsporozoite proteins of malaria parasites. Cell 42, 401–3.CrossRefGoogle ScholarPubMed
Ockenhouse, C. F., Schulman, S. & Shear, H. L. (1984). Induction of crisis form in the human malaria parasite Plasmodium falciparum by gamma-interferon-activated, monocyte-derived macrophages. Journal of Immunology 133, 1601–8.CrossRefGoogle Scholar
Polder, T., Jerusalem, C. & Eling, W. (1983). Topographical distribution of the cerebral lesions in mice infected with Plasmodium berghei. Tropenmedizin und Parasitologie 34. 235–43.Google ScholarPubMed
Rest, J. R. (1982). Cerebral malaria in inbred mice. I. A new model and its pathology. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 410–15.CrossRefGoogle Scholar
Rest, J. R. & Wright, D. H. (1979). Electron microscopy of cerebral malaria in golden hamsters (Mesocricetus auratus) infected with Plasmodium berghei. Journal of Pathology 127, 115–20.CrossRefGoogle ScholarPubMed
Rosenberg, Y. J. (1978). Autoimmune and polyclonal B-cell responses during murine malaria. Nature. London 274. 170–2.CrossRefGoogle ScholarPubMed
Schwartz, R. H. (1986). Immune response genes (Ir) genes of the murine major histocompatibility complex. Advances in Immunology 38, 31201.CrossRefGoogle ScholarPubMed
Sheagren, J. N., Tobie, J. E., Fox, L. M. & Wolfe, S. M. (1970). Reticulo-endothelial system phagocytic function in naturally acquired human malaria. Journal of Laboratory and Clinical Medicine 75, 481–7.Google Scholar
Shevach, E. M. (1985). The effects of Cyclosporin A on the immune system. Annual Review in Immunology 3, 397423.CrossRefGoogle ScholarPubMed
Skudowitz, R. B., Katz, J., Lurie, A., Levin, J. & Metz, J. (1973). Mechanisms of thrombocytopenia in malignant tertian malaria. British Medical Journal 2, 515–47.CrossRefGoogle ScholarPubMed
Srichaikul, T., Puwasatien, P., Karnjanajetanee, J. & Bokisch, V. A. (1975). Complement changes and disseminated intravascular coagulation in Plasmodium falciparum malaria. Lancet i, 770–2.CrossRefGoogle Scholar
Tapchaisri, P., Chomcharn, Y.. Poonthong, C, Asavanich, A., Limsuwan, S., Maleevan, O., Tharavanij, S. & Harinasuta, T. (1983). Anti-sporozoite antibodies induced by natural infection. American Journal of Tropical Medicine and Hygiene 32, 1203–8.CrossRefGoogle ScholarPubMed
Thommen-Scott, K. (1981). Antimalarial activity of Cyclosporin A. Agents and Actions 11. 770–3.CrossRefGoogle ScholarPubMed
Togna, A. R.. Del Giudice, G., Verdini, A., Bonelli, F., Pessi, A., Engers, H. D. & Corradin, G. (1986). Synthetic P. falciparum circumsporozoite peptide elicit heterogenous L3T4+ T cell proliferative responses in H-2b mice. Journal of Immunology 137 (in the Press).Google ScholarPubMed
Toro, G. & Roman, G. (1978). Cerebral malaria. A disseminated vasculomyelinopathy. Archives of Neurology 35. 271–5.CrossRefGoogle ScholarPubMed
Vreken, J., Cremer-Goote, T. M. (1978). Haemostatic defect in non-immune patients with falciparum malaria: no evidence of diffuse intravascular coagulation. British Medical Journal 2. 533–5.CrossRefGoogle Scholar
Wash, A. C. (1979). Cerebral malaria (letter). Archives of Neurology 36, 119.Google Scholar
Watts, T. (1969). Thymus weights in malnourished children. Journal of Tropical Pediatrics 15. 155–8.CrossRefGoogle ScholarPubMed
Wilson, J. J., Neame, P. B. & Kelton, J. G. (1982). Infection-induced thrombocytopenia. Seminars in Thrombosis and Haemostasis 8. 217–33.CrossRefGoogle ScholarPubMed
Wiskocil, R., Weiss, A., Imboden, J., Kamin-Lewis, R. & Stobo, J. (1985). Activation of a human T-cell line: a two-stimulus requirement in the pretranslational events involved in the coordinate expression interleukin 2 and interferon-Γ genes. Journal of Immunology 134. 1599–603.CrossRefGoogle Scholar
Wright, D. H., Masembe, R. M. & Bazira, E. R. (1971). The effect of antithymocyte serum on golden hamsters and rats infected with Plasmodium berghei. British Journal of Experimental Pathology 52, 465–77.Google ScholarPubMed
Yoeli, M. & Hargreaves, B. J. (1974). Brain capillary blockage produced by a virulent strain of rodent malaria. Science 184, 572–3.CrossRefGoogle ScholarPubMed
Young, J. F., Hockmeyer, W. T., Gross, M.. Ballou, W. R., Wirtz, R. A., Trosper, G. H., Beaudoin, R. L., Hollingdale, M. R., Miller, L. H., Diggs, C. L. & Rosenberg, M. (1985). Expression of Plasmodium falciparum circumsporozoite proteins in Escherichia coli for potential use in a human malaria vaccine. Science 228, 958–62.CrossRefGoogle Scholar
Zavala, F., Cochrane, A. H.. Nardin, E. H., Nussenzweig, R. S. & Nussenzweig, V. (1983). Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes. Journal of Experimental Medicine 157, 1947–57.CrossRefGoogle ScholarPubMed
Zavala, F., Tam, J. P., Hollingdale, M. R., Cochrane, A. H., Quakyi, I., Nussenzweig, R. S. & Nussenzweig, V. (1985 b). Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228, 1436–40.CrossRefGoogle ScholarPubMed
Zavala, F.. Tam, J. P. & Masuda, A. (1986). Synthetic peptides for the detection of humoral immunity of Plasmodium falciparum sporozoites. Journal of Immunological Methods 93, 5561.CrossRefGoogle ScholarPubMed
Zavala, F., Tam, J. P., Nussenzweig, R. S. & Nussenzweig, V. (1985a). The epitope specificity of anti-P. falciparum sporozoite antibodies present in human sera from endemic areas. Federation Proceedings 44, 980.Google Scholar