Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T06:11:31.117Z Has data issue: false hasContentIssue false

Feeding performance of fleas on different host species: is phylogenetic distance between hosts important?

Published online by Cambridge University Press:  14 October 2011

IRINA S. KHOKHLOVA
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
LAURA J. FIELDEN
Affiliation:
School of Science and Math, Truman State University, Kirksville, MO 63501, USA
A. ALLAN DEGEN
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
BORIS R. KRASNOV*
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
*
*Corresponding author: Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel. Tel: +972 8 6596841. Fax: +972 8 6596772. E-mail: [email protected]

Summary

We asked if and how feeding performance of fleas on an auxiliary host is affected by the phylogenetic distance between this host and the principal host of a flea. We investigated the feeding of 2 flea species, Parapulex chephrenis and Xenopsylla ramesis, on a principal (Acomys cahirinus and Meriones crassus, respectively) and 8 auxiliary host species. We predicted that fleas would perform better (higher proportion of fleas would feed and take larger bloodmeals) on (a) a principal rather than an auxiliary host and (b) auxiliary hosts phylogenetically closer to a principal host. Although feeding performance of fleas differed among different hosts, we found that: (1) fleas did not always perform better on a principal host than on an auxiliary host; and (2) flea performance on an auxiliary host was not negatively correlated with phylogenetic distance of this host from the principal host. In some cases, fleas fed better on hosts that were phylogenetically distant from their principal host. We concluded that variation in flea feeding performance among host species results from interplay between (a) inherent species-specific host defence abilities, (b) inherent species-specific flea abilities to withstand host defences and (c) evolutionary tightness of association between a particular host species and a particular flea species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abiadh, A., Chetoui, M., Lamine-Cheniti, T., Capanna, E. and Colangelo, P. (2010). Molecular phylogenetics of the genus Gerbillus (Rodentia, Gerbillinae): Implications for systematics, taxonomy and chromosomal evolution. Molecular Phylogenetic and Evolution 56, 513518.CrossRefGoogle ScholarPubMed
Amin, O. M. (1982). The significance of pronotal comb patterns in flea-host lodging adaptations. Wiadomosci Parazytologiczne 28, 9394.Google Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L. and Purvis, A. (2007). The delayed rise of present-day mammals. Nature, London 446, 507512.CrossRefGoogle ScholarPubMed
Brooks, D. R. and McLennan, D. A. (1991). Phylogeny, Ecology, and Behaviour: A Research Program in Comparative Biology. University of Chicago Press, Chicago, IL, USA.Google Scholar
Chevret, P. and Dobigny, G. (2005). Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Molecular Phylogenetic and Evolution 35, 674688.Google ScholarPubMed
Combes, C. (2001). Parasitism. The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago, IL, USA.Google Scholar
Darskaya, N. F. (1970). Ecological comparisons of some fleas of the USSR fauna. Zoologicheskii Zhurnal 49, 729745 (in Russian).Google Scholar
Dogiel, V. A., Petrushevski, G. K. and Polyanski, Y. I. (1961). Parasitology of Fishes. Oliver and Boyd, Edinburgh, UK.Google Scholar
Eckstein, R. A. and Hart, B. L. (2000). The organization and control of grooming in cats. Applied Animal Behaviour Science 68, 131140.CrossRefGoogle ScholarPubMed
Farhang-Azad, A., Traub, R. and Wisseman, C. L. (1983). Rickettsia mooseri infection in the fleas Leptopsylla segnis and Xenopsylla cheopis. American Journal of Tropical Medicine and Hygiene 32, 13921400.CrossRefGoogle ScholarPubMed
Fielden, L. J., Rechav, Y. and Bryson, N R. (1992). Acquired immunity to larvae of Amblyomma marmoreum and A. hebraeum by tortoises, guinea-pigs and guinea-fowl. Medical and Veterinary Entomology 6, 251254.CrossRefGoogle Scholar
Goüy de Bellocq, J., Krasnov, B. R., Khokhlova, I. S. and Pinshow, B. (2006). Temporal dynamics of a T-cell mediated immune response in desert rodents. Comparative Biochemistry and Physiology A 145, 554559.CrossRefGoogle ScholarPubMed
Haitlinger, R. (1973). The parasitological investigation of small mammals of the Góry Sowie (Middle Sudetes). I. Siphonaptera (Insecta). Polskie Pismo Entomologiczne 43, 499519.Google Scholar
Harvey, P. H. and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.Google Scholar
Hawlena, H., Abramsky, Z. and Krasnov, B. R. (2005). Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent. Oecologia 146, 200208.CrossRefGoogle ScholarPubMed
Hawlena, H., Abramsky, Z., Krasnov, B. R. and Saltz, D. (2007). Regulation mechanisms in haematophagous parasites: Host defence or intraspecific competition? International Journal for Parasitology 37, 919925.CrossRefGoogle ScholarPubMed
Hinkle, N. C., Koehler, P. G. and Patterson, R. S. (1998). Host grooming efficiency for regulation of cat flea (Siphonaptera: Pulicidae) populations. Journal of Medical Entomology 35, 266269.CrossRefGoogle ScholarPubMed
Jansa, S. A. and Weksler, M. (2004). Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetic and Evolution 31, 256276.CrossRefGoogle ScholarPubMed
Jones, C. J. (1996). Immune responses to fleas, bugs and sucking lice. In The Immunology of Host-Ectoparasitic Arthropod Relationships (ed. Wikel, S. K.), pp. 150174. CAB International, Wallingford, UK.Google Scholar
Khokhlova, I. S., Serobyan, V., Degen, A. A. and Krasnov, B. R. (2010). Host gender and offspring quality in a flea parasitic on a rodent. Journal of Experimental Biology 213, 32993304.CrossRefGoogle Scholar
Khokhlova, I. S., Serobyan, V., Krasnov, B. R. and Degen, A. A. (2009 a). Effect of host gender on blood digestion in fleas: mediating role of environment. Parasitology Research 105, 16671673.CrossRefGoogle ScholarPubMed
Khokhlova, I. S., Serobyan, V., Krasnov, B. R. and Degen, A. A. (2009 b). Is the feeding and reproductive performance of the flea, Xenopsylla ramesis, affected by the gender of its rodent host, Meriones crassus? Journal of Experimental Biology 212, 14291435.CrossRefGoogle ScholarPubMed
Khokhlova, I. S., Spinu, M., Krasnov, B. R. and Degen, A. A. (2004). Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages. Parasitology Research 94, 304311.CrossRefGoogle ScholarPubMed
Krasnov, B. R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Krasnov, B. R., Burdelova, N. V., Shenbrot, G. I. and Khokhlova, I. S. (2002 b). Annual cycles of four flea species (Siphonaptera) in the central Negev desert. Medical and Veterinary Entomology 16, 266276.Google ScholarPubMed
Krasnov, B. R., Hastriter, M., Medvedev, S. G., Shenbrot, G. I., Khokhlova, I. S. and Vashchenok, V. S. (1999). Additional records of fleas (Siphonaptera) on wild rodents in the southern part of Israel. Israel Journal of Zoology 45, 333340.Google Scholar
Krasnov, B. R., Khokhlova, I. S., Oguzoglu, I. and Burdelova, N. V. (2002 a). Host discrimination by two desert fleas using an odour cue. Animal Behavior 64, 3340.Google Scholar
Krasnov, B. R., Korine, C., Burdelova, N. V., Khokhlova, I. S. and Pinshow, B. (2007). Between-host phylogenetic distance and feeding efficiency in haematophagous ectoparasites: Rodent fleas and a bat host. Parasitology Research 101, 365371.CrossRefGoogle Scholar
Krasnov, B. R., Sarfati, M., Arakelyan, M. S., Khokhlova, I. S., Burdelova, N. V. and Degen, A. A. (2003). Host-specificity and foraging efficiency in blood-sucking parasite: Feeding patterns of a flea Parapulex chephrenis on two species of desert rodents. Parasitology Research 90, 393399.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2004). Relationships between parasite abundance and the taxonomic distance among a parasite's host species: An example with fleas parasitic on small mammals. International Journal for Parasitology 34, 12891297.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Shenbrot, G. I., Medvedev, S. G., Vashchenok, V. S. and Khokhlova, I. S. (1997). Host-habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114, 159173.CrossRefGoogle ScholarPubMed
Lehane, M. (2005). The Biology of Blood-Sucking in Insects, 2nd Edn. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Ma, L.-M. (1983). Distribution of fleas in the hair coat of the host. Acta Entomologica Sinica 26, 409412 (in Chinese).Google Scholar
Marshall, A. G. (1981). The Ecology of Ectoparasitic Insects. Academic Press, London, UK.Google Scholar
Martin, T. E., Møller, A. P., Merino, S. and Clobert, J. (2001). Does clutch size evolve in response to parasites and immunocompetence? Proceedings of the National Academy of Sciences, USA 98, 20712076.CrossRefGoogle ScholarPubMed
Møller, A. P., Christe, P. and Garamszegi, L. Z. (2005). Coevolutionary arms races: Increased host immune defense promotes specialization by avian fleas. Journal of Evolutionary Biology 18, 4659.CrossRefGoogle ScholarPubMed
Nikitina, N. A. and Nikolaeva, G. (1979). Study of the ability of some rodents to get rid of fleas. Zoologicheskyi Zhurnal 58, 931933 (in Russian).Google Scholar
Nikitina, N. A. and Nikolaeva, G. (1981). Ability of rodents to clean themselves of specific and non-specific fleas. Zoologicheskyi Zhurnal 60, 165167 (in Russian).Google Scholar
Paradis, E., Claude, J. and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289290.CrossRefGoogle ScholarPubMed
Poulin, R. (2005). Relative infection levels and taxonomic distances among the host species used by a parasite: insights into parasite specialization. Parasitology 130, 109115.CrossRefGoogle ScholarPubMed
Poulin, P., Brodeur, J. and Moore, J. (1994). Parasite manipulation of host behaviour: Should hosts always loose? Oikos 70, 479484.CrossRefGoogle Scholar
R Development Core Team. (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.Google Scholar
Rechav, Y. and Dauth, J. (1987). Development of resistance in rabbits to immature stages of the ixodid tick Rhipicephalus appendiculatus. Medical and Veterinary Entomology 1, 177183.CrossRefGoogle ScholarPubMed
Sarfati, M., Krasnov, B. R., Ghazaryan, L., Khokhlova, I. S., Fielden, L. J. and Degen, A. A. (2005). Energy costs of blood digestion in a host-specific haematophagous parasite. Journal of Experimental Biology 208, 24892496.Google Scholar
Stanko, M., Miklisova, D., Goüy de Bellocq, J. and Morand, S. (2002). Mammal density and patterns of ectoparasite species richness and abundance. Oecologia 131, 289295.CrossRefGoogle ScholarPubMed
Studdert, V. P. and Arundel, J. H. (1988). Dermatitis of the pinnae of cats in Australia associated with the European rabbit flea (Spilopsyllus cuniculi). Veterinary Record 123, 624625.Google ScholarPubMed
Tella, J. L., Scheuerlein, A. and Ricklefs, R. E. (2002). Is cell-mediated immunity related to the evolution of life-history strategies in birds? Proceedings of the Royal Society of London, B 269, 10591066.CrossRefGoogle Scholar
Traub, R. (1980). The zoogeography and evolution of some fleas, lice and mammals. In Fleas. Proceedings of the International Conference on Fleas, Ashton Wold, Peterborough, UK, 21–25 June 1977 (ed. Traub, R. and Starke, H.), pp. 93172. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
Zhovty, I. F. and Vasiliev, G. I. (1962). Temperature conditions of rodents’ fur as an environment for fleas. Transactions of the Irkutsk State Scientific Anti-Plague Institute of Siberia and Far East 4, 152156 (in Russian).Google Scholar