Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:33:03.308Z Has data issue: false hasContentIssue false

Diagnosing genetically diverse avian malarial infections using mixed-sequence analysis and TA-cloning

Published online by Cambridge University Press:  07 March 2005

J. PÉREZ-TRIS
Affiliation:
Department of Animal Ecology, Lund University, Ecology Building, SE-22362 Lund, Sweden
S. BENSCH
Affiliation:
Department of Animal Ecology, Lund University, Ecology Building, SE-22362 Lund, Sweden

Abstract

Birds harbouring several malarial parasites are common in the wild, and resolving such multiple infections is important for our understanding of host–parasite relationships. We propose a simple and reasonably accurate method for detecting and resolving multiple infections, based on the analysis of parasite cytochrome b DNA sequences: genetically mixed infections are first identified by double nucleotide peaks on sequence electropherograms, and later retrieved by TA-cloning. We applied this method to wild birds, and to experimentally created mixes with varying proportion of two parasites (Plasmodium spp. and Haemoproteus spp.). In general, the method was very efficient in detecting and resolving multiple infections, but some problems were encountered. Several multiple infections were erroneously scored as simple, either because one of the parasite lineages was a better target for the primers used, or because it was much more abundant in the mix. On the other hand, single nucleotide substitutions and template switching during PCR produced artificial sequences in some clones. We discuss the utility of the method, and propose a framework for its use when screening for genetically diverse avian malarial parasites.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ATKINSON, C. T. & VAN RIPER, C. III ( 1991). Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In Bird-Parasite Interactions: Ecology, Evolution and Behaviour ( ed. Loye, J. E. & Zuk, M.), pp. 1948. Oxford University Press, Oxford.
BENSCH, S., STJERNMAN, M., HASSELQUIST, D., ÖSTMAN, Ö., HANSSON, B., WESTERDAHL, H. & PINHEIRO, R. T. ( 2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London, B 267, 15831589.CrossRefGoogle Scholar
BENSCH, S., PÉREZ-TRIS, J., WALDENSTRÖM, J. & HELLGREN, O. ( 2004). Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites – multiple cases of cryptic speciation? Evolution 58, 16171621.Google Scholar
BRUCE, M. C., DONNELLY, C. A., ALPERS, M. P., GALINSKI, M. R., BARNWELL, J. W., WALLIKER, D. & DAY, K. P. ( 2000). Cross-species interactions between malaria parasites in humans. Science 287, 845848.CrossRefGoogle Scholar
CHEESMAN, S. J., DE ROODE, J. C., READ, A. F. & CARTER, R. ( 2003). Real-time quantitative PCR for analysis of genetically mixed infections of malaria parasites: technique validation and applications. Molecular and Biochemical Parasitology 131, 8391.CrossRefGoogle Scholar
DE ROODE, J. C., CULLETON, R., CHEESMAN, S. J., CARTER, R. & READ, A. F. ( 2004). Host heterogeneity is a determinant of competitive exclusion or coexistence in genetically diverse malaria infections. Proceedings of the Royal Society of London, B 271, 10731080.CrossRefGoogle Scholar
FALLIS, A. M. & DESSER, S. ( 1977). On species of Leucocytozoon, Haemoproteus, and Hepatocystis. In Parasitic Protozoa. Vol. 3 (ed. Kreier, J. P.), pp. 239266. Academic Press, New York.
FALLON, S. M., RICKLEFS, R. E., SWANSON, B. L. & BERMINGHAM, E. ( 2003). Detecting avian malaria: an improved PCR diagnostic. Journal of Parasitology 89, 10441047.CrossRefGoogle Scholar
GU, W. D. & SWIHART, R. K. ( 2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biological Conservation 116, 195203.CrossRefGoogle Scholar
HALL, T. A. ( 1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleics Acids Symposium Series 41, 9598.Google Scholar
HELLGREN, O., WALDENSTRÖM, J. & BENSCH, S. ( 2004). A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology 90, 797802.CrossRefGoogle Scholar
HOFREITER, M., JAENICKE, V., SERRE, D., VON HAESELER, A. & PÄÄBO, S. ( 2001). DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Research 29, 47934799.CrossRefGoogle Scholar
LELLO, J., BOAG, B., FENTON, A., STEVENSON, I. R. & HUDSON, P. J. ( 2004). Competition and mutualism among the gut helminths of a mammalian host. Nature, London 428, 840844.CrossRefGoogle Scholar
PAUL, R. E. L., NU, V. A. T., KRETTLI, A. U. & BREY, P. T. ( 2002). Interspecific competition during transmission of two sympatric malaria parasite species to the mosquito vector. Proceedings of the Royal Society of London, B 269, 25512557.CrossRefGoogle Scholar
PERANDIN, F., MANCA, N., CALDERARO, A., PICCOLO, G., GALATI, L., RICCI, L., MEDICI, M. C., ARCANGELETTI, M. C., SNOUNOU, G., DETTORI, G. & CHEZZI, C. ( 2004). Development of a Real-Time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. Journal of Clinical Microbiology 42, 12141219.CrossRefGoogle Scholar
PERKINS, S. L. ( 2000). Species concepts and malaria parasites: detecting a cryptic species of Plasmodium. Proceedings of the Royal Society of London, B 267, 23452350.CrossRefGoogle Scholar
POULIN, R. ( 1997). Species richness of parasite assemblages: evolution and patterns. Annual Review of Ecology and Systematics 28, 341358.CrossRefGoogle Scholar
READ, A. F. & TAYLOR, L. H. ( 2001). The ecology of genetically diverse infections. Science 292, 10991102.CrossRefGoogle Scholar
RICHARD, F. A., SEHGAL, R. N. M., JONES, H. I. & SMITH, T. B. ( 2002). A comparative analysis of PCR-based detection methods for avian malaria. Journal of Parasitology 88, 819822.CrossRefGoogle Scholar
RICKLEFS, R. E., FALLON, S. M. & BERMINGHAM, E. ( 2004). Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Systematic Biology 53, 111119.CrossRefGoogle Scholar
VAN BAALEN, M. & SABELIS, M. W. ( 1995). The dynamics of multiple infection and the evolution of virulence. American Naturalist 146, 881910.CrossRefGoogle Scholar
VAN RIPER, C. III, ATKINSON, C. T. & SEED, T. M. ( 1993). Plasmodia of birds. In Parasitic protozoa. Vol. 7. ( ed. Kreier, J. P.), pp. 73140. Academic Press, New York.
WAKELEY, J. ( 1996). The excess of transitions among nucleotide substitutions: new methods of estimation transition bias underscore its significance. Trends in Ecology and Evolution 11, 158163.CrossRefGoogle Scholar
WALDENSTRÖM, J., BENSCH, S., KIBOI, S., HASSELQUIST, D. & OTTOSSON, U. ( 2002). Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Molecular Ecology 11, 15451554.CrossRefGoogle Scholar
WALDENSTRÖM, J., BENSCH, S., HASSELQUIST, D. & ÖSTMAN, Ö. ( 2004). A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology 90, 191194.CrossRefGoogle Scholar
YAMASAKI, H., ALLAN, J. C., SATO, M. O., NAKAO, M., SAKO, Y., NAKAYA, K., QIU, D., MAMUTI, W., CRAIG, P. S. & ITO, A. ( 2004). DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCR. Journal of Clinical Microbiology 42, 548553.CrossRefGoogle Scholar