Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T22:46:41.371Z Has data issue: false hasContentIssue false

Dinosaur Bone Histology: Implications and Inferences

Published online by Cambridge University Press:  26 July 2017

Anusuya Chinsamy*
Affiliation:
Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104-6045
Get access

Extract

A study of the anatomy and morphology of a fossil skeleton indicates the overall size, posture, and form of the animal. Even various functional aspects of the skeleton such as preferred mode of locomotion and chewing mechanisms can be deduced from such studies. But the desire to understand dinosaurs as dynamic, once-living animals and not merely as taxonomic entities arranged in phylogenetic schemes, goes beyond this. In 1842, Sir Richard Owen not only presented dinosaurs taxonomically but he also initiated the quest to understand the biology of these animals. In recent decades, the study of dinosaur paleobiology has blossomed, and has provided a crucial link between studies of morphology (structures) and that of function and physiology.

Type
Adaptations and Behavior
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l'accroissement. Archives de Biologie 58: 315330.Google Scholar
Barretto, C., Albrecht, R. M., Bjorling, D. E., Horner, J. R., and Wilsman, N. J. 1993. Evidence of the growth plate and the growth of long bones in juvenile dinosaurs. Science, 262: 20202023.Google Scholar
Barrick, R. E., Showers, W. J., Fisher, A. G., and Genna, B. 1992 In Fifth North American Paleontological Convention. Abstracts and Program, p.17. The Paleontological Society Special Publication. no. 6.Google Scholar
Bakker, R. T. 1986. The Dinosaur Heresies: New Theories Unlocking the Mystery of the Dinosaurs and their Extinction. William Morrow and Co. Inc., New York.Google Scholar
Bocherens, H., Mariotti, A., Fizet, M., Borel, J. P. and Bellon, G. 1991. Dinosaur diets as revealed by isotope biogeochemistry (13C15N) of bone fossil organic matter, p. 78. In Fifth symposium on Mesozoic Terrestrial Ecosystems and Biota. Extended abstracts. Contributions from the Palaeontological Museum, University of Oslo, 364.Google Scholar
Buffrenil, V. De. 1980. Mise en evidence de l'incidence des conditions de milieu sur la croissance de Crocodylus siamensis (Schneider, 1801) et valeur des marques de croissance squelettiques pour l'évaluation de l'âge individuel. Archives de Zoologie Expérimentale Générale, 121:6376.Google Scholar
Castanet, J. and Cheylan, M. 1979. Les marques de croissance des os et des écailles comme indicateur de l'age chez Testudo hermanni et Testudo graeca (Reptilia, Chelonia, Testudinidae). Canadian Journal of Zoology, 57:16491665.Google Scholar
Castanet, J., Newman, D. G. and Saint-Girons, H., 1988. Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and Lady Alice Islands. Herpetologica, 44:2537.Google Scholar
Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontologia africana, 27:7782.Google Scholar
Chinsamy, A. 1991. Quantification of the vascularization of bone tissue in some members of the archosaurian clade, p. 14. In Fifth symposium on Mesozoic Terrestrial Ecosystems and Biota. Extended abstracts. Contributions from the Palaeontological Museum, University of Oslo, 364:14.Google Scholar
Chinsamy, A. 1993a. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus (Owen). Modern Geology, 18:319329.Google Scholar
Chinsamy, A. 1993b. Image Analysis and the physiological implications of the vascularization of femora in archosaurs. Modern Geology, 19:101108.Google Scholar
Chinsamy, A. In press. Ontogenetic changes in the bone histology of the Late Jurassic ornithopod Dryosaurus lettowvorbecki . Journal of Vertebrate Paleontology.Google Scholar
Chinsamy, A., and Rubidge, B. S. 1993. Dicynodont (Therapsida) bone histology: phylogenetic and physiological implications. Palaeontologia africana, 30:97102.Google Scholar
Currey, J. D. 1962. The histology of the bone of a prosauropod dinosaur. Palaeontology, 5:238246.Google Scholar
Dunham, A. E., Overall, K. L., Porter, W. P., and Forster, C. 1989. Implications of ecological energetics, and biophysical and developmental constraints for life history variation in dinosaurs. Geological Society of America, Special Papers 238: 119.Google Scholar
Enlow, D. H., and Brown, S. O. 1957. A comparative histological study of fossil and recent bone tissue. Part 2. Texas Journal of Science, 9:186214.Google Scholar
Gross, W. 1934. Die Typen des mikroskopischen Knochenbaues bei fossilen Stegocephalen und Reptilien. Zeitschrift fur Anatomie 103: 731764.Google Scholar
Kolodny, Y. and Luz, B. 1993. Dinosaur thermal physiology from δ18O in bone phosphate; is it possible? In Second Oxford Workshop on Bone Diagenesis. July 1993. Abstracts. Oxford University.Google Scholar
Patnaik, B. K. and Behera, M. N. 1981. Age determination in the tropical agamid lizard, Calotes versicolor (Daudin) based on bone histology. Experimental Gerontology, 16:295308.CrossRefGoogle ScholarPubMed
Pawlicki, R. 1979. Histochemical reactions for mucopolysaccharides in the dinosaur bone studies on Epon and methacrylate embedded semithin sections as well as on isolated osteocytes and ground sections of bone. Acta Histochemica, 58:7578.Google Scholar
Reid, R. E. H. 1987. Bone and dinosaurian “endothermy”. Modern Geology, 11:133154.Google Scholar
Reid, R. E. H. 1990. Zonal “growth rings” in dinosaurs. Modern Geology, 15:1948.Google Scholar
Reid, R. E. H. 1993. Apparent zonation and slowed late growth in a small Cretaceous theropod. Modern Geology, 18: 391406.Google Scholar
Ricqles, A. De. 1976. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance, p. 123150. In Bellairs, A. d'A. and Cox, C. B. (eds.), Morphology and Biology of Reptiles. Academic Press, London.Google Scholar
Ricqles, A. De. 1980. Tissue structure of dinosaur bone: functional significance and possible relation to dinosaur physiology, p. 103139. In Thomas, R. D. K. and Olson, E. C. (eds.), A Cold Look at the Warm Blooded Dinosaurs. Westview Press, Boulder.Google Scholar
Ricqles, A. De. 1983. Cyclical growth in the long limb bones of a sauropod dinosaur. Acta Palaeontologica Polonica, 28:225.Google Scholar
Ricqles, A. De., Meunier, F. J., Castanet, J., and Francillonviellot, H. (1991). Comparative microstructure of bone, pp. 177. In Hall, B. K. (ed.), Bone. Bone matrix and bone specific products. Volume 3. CRC Press Incorporated, Boca Raton.Google Scholar
Varricchio, D. J. 1993. Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus . Journal of Vertebrate Paleontology, 13:99104.Google Scholar