Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T04:06:23.377Z Has data issue: false hasContentIssue false

Extinctions in a model taxonomic hierarchy

Published online by Cambridge University Press:  08 April 2016

James W. Valentine
Affiliation:
Department of Geological Sciences, University of California, Santa Barbara, California 93106
Timothy D. Walker
Affiliation:
Department of Geological Sciences, University of California, Santa Barbara, California 93106

Abstract

A computer model of background and mass extinctions in a taxonomic hierarchy has been used to study the effects of different extinction patterns in a search for clues as to the causes of actual extinction events. Model taxa at four levels were built up from speciation events in adaptive space according to rules of origination which seem plausible biologically. The frequency distribution of species among the three higher taxonomic levels in the model is similar to that in living marine taxa which have good fossil records. Three mass extinction patterns were imposed on the model after species diversity had attained equilibrium (i.e., when speciation = background extinction): random; bloc (contiguous niches were cleared); and clade (all members of selected higher taxa were removed). Effects on the taxonomic profile varied with pattern. Four of the five historical mass extinctions resemble the effects of the random pattern. End-Permian families were harder hit than those in the random model, but this may be a result of an extremely high species extinction level. It is concluded that the effect of extinctions on the taxonomic hierarchy provides a tool to help in understanding extinction causes.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science. 208:10951108.Google Scholar
Alvarez, W., Kauffman, E. G., Surlyk, F., Alvarez, L. W., Asaro, F., and Michel, H. V. 1984. Impact theory of mass extinctions and the invertebrate fossil record. Science. 223:11351141.CrossRefGoogle ScholarPubMed
Batten, R. L. 1973. The vicissitudes of the gastropods during the interval of Guadelupian-Ladinian time. Pp. 596607. In: Logan, A. and Hills, L. V., eds. The Permian and Triassic Systems and their Mutual Boundaries. Canadian Soc. Petrol. Geol., Calgary.Google Scholar
Boss, K. J. 1971. Critical estimate of the number of Recent Mollusca. Occas. Papers Moll., Harvard Univ. 3:91135.Google Scholar
Cys, J. M., Toomey, D. F., Brezina, J. L., Greenwood, E., Groves, D. B., Klement, K. W., Kallmann, J. D., McMillan, T. L., Schmidt, V., Sneed, E. D., and Wagner, L. H. 1977. Capitan Reef—evolution of a concept. Pp. 201321. In: Hileman, M. E. and Mazullo, S. J., eds. Upper Guadelupian Facies, Permian Reef Complex, Guadelupe Mountains, New Mexico and Texas. Soc. Econ. Paleon. Mineral., Permian Basin Sectn., Pub. 77-16.Google Scholar
Elliott, D. K., ed. 1986. Dynamics of Extinction. Wiley; New York. 294 pp.Google Scholar
Erwin, D. H. 1985. The Cerithiacea, Subulitacea, Pyramidellacea and Acteonacea of the Permian Basin, West Texas and New Mexico, with a consideration of Permo-Triassic Gastropod Dynamics. Ph.D. dissertation, Univ. California, Santa Barbara. 290 pp.Google Scholar
Fell, F. J. 1982. Echinodermata. Pp. 785818. In: Parker, S. P., ed. Synopsis and Classification of Living Organisms, v. 2. McGraw-Hill; New York.Google Scholar
Foster, M. W. 1982. Brachiopoda. Pp. 773780. In: Parker, S. P., ed. Synopsis and Classification of Living Organisms, v. 2. McGraw-Hill; New York.Google Scholar
Hallam, A. 1986. The Pliensbachian and Tithonian extinction events. Nature. 319:765768.Google Scholar
House, M. R. 1985. Correlation of mid-Paleozoic ammonoid evolutionary events with global sedimentary perturbations. Nature. 313:1922.CrossRefGoogle Scholar
Jablonski, D. 1985. Marine regressions and mass extinctions: a test using the modern biota. Pp. 335353. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Jablonski, D. 1986a. Background and mass extinctions: the alternation of macroevolutionary regimes. Science. 231:129133.Google Scholar
Jablonski, D. 1986b. Causes and consequences of mass extinctions: a comparative approach. Pp. 183229. In: Elliott, D. K., ed. Dynamics of Extinction. Wiley; New York.Google Scholar
Kauffman, S. A. 1985. Self-organization, selective adaptation, and its limits: a new pattern of inference in evolution and development. Pp. 169207. In: Depew, D. J. and Weber, B. H., eds. Evolution at a Crossroads. MIT Press, Cambridge, Mass.Google Scholar
Kummel, B. 1973. Lower Triassic (Scythian) mollusks. Pp. 225233. In: Hallam, A., ed. Atlas of Paleobiogeography. Elsevier; Amsterdam.Google Scholar
McGhee, G. R. Jr. 1982. The Frasnian-Fammenian extinction event: a preliminary analysis of Appalachian marine ecosystems. Geol. Soc. Am. Spec. Paper 190:491500.Google Scholar
Nitecki, M. H., ed. 1984. Extinctions. Univ. Chicago Press; Chicago, Illinois. 354 pp.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology. 4:115.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science. 206:217218.Google Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science. 215:15011503.Google Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA. 81:801805.Google Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science. 231:833836.Google Scholar
Rickards, R. B. 1977. Patterns of evolution in the graptolites. Pp. 333358. In: Hallam, A., ed. Patterns of Evolution as Illustrated by the Fossil Record. Elsevier Scientific; Amsterdam, Oxford and New York.Google Scholar
Ryland, J. S. 1970. Bryozoans. Hutchinson; London. 175 pp.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinction: relation to sea-floor spreading. J. Geol. 82:129143.Google Scholar
Schopf, T. J. M. 1977. Patterns of evolution: a summary and discussion. Pp. 547561. In: Hallam, A., ed. Patterns of Evolution as Illustrated by the Fossil Record. Elsevier Scientific; Amsterdam, Oxford and New York.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contrib., Biol and Geol. 51:1125.Google Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295. In: Raup, D. M. and Jablonski, D., eds. Phanerozoic Life, Pattern and Process. Springer-Verlag; Berlin.Google Scholar
Sepkoski, J. J. Jr. and Hulver, M. L. 1985. An atlas of Phanerozoic clade diagrams. Pp. 1139. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Silver, L. T. and Schultz, A. H., eds. 1982. Geological implications of impacts of large asteroids and comets on the earth. Geol. Soc. Amer., Spec. Paper 190. (528 pp.)Google Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267274.CrossRefGoogle Scholar
Smith, A. 1984. Echinoid Palaeobiology. Allen and Unwin; London. 190 pp.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman, San Francisco. 332 pp.Google Scholar
Stanley, S. M. 1984. Marine mass extinctions. A dominant role for temperature. Pp. 69117. In: Nitecki, M. H., ed. Extinctions. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Strathmann, R. R. 1978. The evolution and loss of feeding larval stages of marine invertebrates. Evolution. 32:894906.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology. 12:684709.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall; Englewood Cliffs, New Jersey. 511 pp.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology. 6:444450.Google Scholar
Valentine, J. W. 1981. Emergence and radiation of multicellular organisms. Pp. 229257. In: Billingham, J., ed. Life in the Universe. MIT Press; Cambridge, Massachusetts.Google Scholar
Valentine, J. W. 1986. The Permian-Triassic extinction event and invertebrate developmental modes. Bull. Mar. Sci. 39:607615.Google Scholar
Valentine, J. W. and Erwin, D. H. 1983. Patterns of diversification of higher taxa: a test of macroevolutionary paradigms. Pp. 219223. In: Chaline, J., ed. Modalites, Rhythmes et Mecanismes de l'Evolution Biologique. Colloqu. Int. C.N.R.S. no. 330.Google Scholar
Valentine, J. W. and Erwin, D. H. 1987. Interpreting great developmental experiments: the fossil record. Pp. 71107. In: Raff, R. A. and Raff, E. C., eds. Development as an Evolutionary Process. Alan R. Liss; New York.Google Scholar
Valentine, J. W. and Jablonski, D. 1983. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution. 37:10521061.Google Scholar
Valentine, J. W. and Jablonski, D. 1986. Mass extinctions: sensitivity of marine larval types. Proc. Nat. Acad. Sci. USA 83:69126914.Google Scholar
Valentine, J. W. and Walker, T. D. 1986. Diversity trends within a model taxonomic hierarchy. Physica D. 22:3142.Google Scholar
Valentine, J. W., Foin, T. C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology. 4:5566.Google Scholar
Vermeij, G. J., ed. 1986. Molluscan extinctions in the geologic past and at the present time. Malacologia. 27:181.Google Scholar
Walker, T. D. 1984. The evolution of diversity in an adaptive mosaic. Ph.D. dissertation, Univ. of California, Santa Barbara. 144 pp.Google Scholar
Walker, T. D. 1985. Diversification functions and the rate of taxonomic evolution. Pp. 311334. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Walker, T. D. and Valentine, J. W. 1985. Equilibrium models of evolutionary species diversity and the number of empty niches. Am. Naturalist. 124:887899.Google Scholar