Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:51:28.413Z Has data issue: false hasContentIssue false

Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: evidence from shell morphology and light stable isotopes

Published online by Cambridge University Press:  08 April 2016

Neil H. Landman
Affiliation:
Department of Invertebrates, American Museum of Natural History, 79th Street and Central Park West, New York, New York 10024
Danny M. Rye
Affiliation:
Department of Geology and Geophysics, P.O. Box 6666, Yale University, New Haven, Connecticut 06511
Kevin L. Shelton
Affiliation:
Department of Geology and Geophysics, P.O. Box 6666, Yale University, New Haven, Connecticut 06511

Abstract

Observations on the morphology of the early whorls of Eutrephoceras dekayi (Morton), a widespread Cretaceous nautilid, are supplemented with oxygen and carbon isotopic analyses (δ18O and δ13C) of the early septa of five well-preserved specimens to help identify the point of hatching on the shell. Septa 4 and 5 are more closely spaced than preceding septa and probably correspond in time of formation with a constriction or first broken aperture on the outer shell one-third whorl forward of the fourth septum. In modern Nautilus, morphologic, isotopic, and observational data suggest that similar features mark hatching. Between the fourth and fifth septa in E. dekayi, δ18O values show a shift of variable magnitude from heavy to lighter values followed by a return to heavier values over the next one to three septa. This isotopic shift is compatible with a hatching interpretation and may be explained as the result of kinetic and equilibrium effects on emergence from an egg capsule.

Eutrephoceras dekayi hatched at about 9 mm in diameter, one-third the hatching size of modern Nautilus. Like Nautilus, E. dekayi probably produced few young, all of which were active swimmers at hatching. In contrast, Mesozoic ammonoids produced numerous offspring ranging from 0.5 to 1.5 mm in diameter which may have spent some time in the plankton. These differences in life history may correlate with differences in ecologic specialization, environmental tolerance, and habitat between ammonoids and nautilids and may have contributed to their disparate rates of evolution during the Mesozoic.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arkell, W. J. 1957. Introduction to Mesozoic Ammonoidea. Pp. L81L124. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part L. Univ. Kansas Press and Geol. Soc. Am.; Lawrence, Kansas.Google Scholar
Bandel, K., Landman, N. H., and Waage, K. M. 1982. Micro-ornamentation on early whorls of Mesozoic ammonites: implications for early ontogeny. J. Paleontol. 56(2):386391.Google Scholar
Birkelund, T. 1979. The last Maastrictian ammonites. Pp. 5157. In: Birkelund, T. and Bromley, R. G., eds. Cretaceous-Tertiary Boundary Events Symposium I. The Maastrichtian and Danian of Denmark. Univ. Copenhagen.Google Scholar
Blind, W. 1976. Die ontogenetische Entwicklung von Nautilus pompilius (Linne). Palaeontographica Abt. A. 153:117160.Google Scholar
Bogoslovsky, B. I. 1976. Early ontogeny and origin of clymenid ammonoids. Paleont. J. 10(2):150158.Google Scholar
Cobban, W. A. 1966. The Red Bird section of the Upper Cretaceous Pierre Shale in Wyoming. U.S.G.S. Prof. Pap. 393–A. 73 pp.Google Scholar
Cochran, J. K., Rye, D. M., and Landman, N. H. 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive ard stable isotope studies. Paleobiology. 7(4):469480.Google Scholar
Davis, R. A. and Mohorter, W. 1973. Juvenile Nautilus from the Fiji Islands. J. Paleontol. 47:925928.Google Scholar
Drushits, V. V., Doguzhayeva, L. A., and Mikhaylova, I. A. 1977. The structure of the ammonitella and the direct development of ammonites. Palaeontol. J. 2:188199.Google Scholar
Eichler, R. and Ristedt, H. 1966. Untersuchungen zur Frühontogenie von Nautilus pompilius (Linne). Paläontol. Z. 40:173191.CrossRefGoogle Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bull. Carnegie Mus. Nat. Hist. no. 13:719.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. 349 pp. Columbia Univ. Press; New York.Google Scholar
Emiliani, C, Hudson, H. J., Shinn, E. A., and George, R. J. 1978. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from the Blake Plateau. Science. 202:627629.Google Scholar
Emiliani, C, Kraus, E. B., and Shoemaker, E. M. 1981. Sudden death at the end of the Mesozoic. Earth Planet. Sci. Lett. 55:317334.Google Scholar
Haas, O. and Miller, A. K. 1952. Eocene nautiloids of British Somaliland. Bull. Amer. Mus. Nat. Hist. 99:317354.Google Scholar
Hirano, H. and Obata, I. 1979. Shell morphology of Nautilus pompilius and N. macromphalus. Bull. Nat. Sci. Mus., Ser. C (Geol.). 5(3):113130.Google Scholar
House, M. R. 1965. A study in the Tornoceratidae: the succession of Tornoceras in the North American Devonian. Philos. Trans. R. Soc. Lond. B250:79130.Google Scholar
Hyatt, A. 1894. Phylogeny of an acquired characteristic. Proc. Amer. Phil. Soc. 32(143):349647.Google Scholar
Jablonski, D. and Lutz, R. A. 1980. Molluscan larval shell morphology. Pp. 323376. In: Rhoads, D. C. and Lutz, R. A., eds. Skeletal Growth of Aquatic Organisms. Plenum; New York.Google Scholar
Kauffman, E. G. 1975. Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior. Pp. 163194. In: Caldwell, W. G. E., ed. The Cretaceous System in the Western Interior of North America. Geol. Assoc. Can. Spec. Pap. 13.Google Scholar
Kauffman, E. G. 1977. Evolutionary rates and biostratigraphy. Pp. 109141. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Kennedy, W. J. 1977. Ammonite evolution. Pp. 251304. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Kennedy, W. J. and Cobban, W. A. 1976. Aspects of ammonite biology, biostratigraphy, and biogeography. Palaeontol. Assoc. Spec. Pap. Paleontol. 17. 94 pp.Google Scholar
Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Acta Paleontol. Polon. 30:97142.Google Scholar
Kummel, B. 1956. Post-Triassic nautiloid genera. Bull. Mus. Comp. Zool. 114(7):324494.Google Scholar
Kummel, B. 1964. Nautiloidea—Nautilida. Pp. K383K457. In: Moore, R. C, ed. Treatise on Invertebrate Paleontology, Part K. Univ. Kansas Press and Geol. Soc. Am.; Lawrence, Kans.Google Scholar
Land, L. S., Lang, J. C., and Barnes, D. J. 1977. On the stable carbon and oxygen isotopic composition of some shallow water ahermatypic scleractinian coral skeletons. Geochim. Cosmochim. Acta. 47:169172.Google Scholar
Landman, N. H. 1982a. Embryonic shells of Baculites. J. Paleontol. 56:12351241.Google Scholar
Landman, N. H. 1982b. Ontogeny of scaphitid ammonites. Geol. Soc. Am. Abst. with Prog. 14(7):540.Google Scholar
Landman, N. H. and Waage, K. M. 1982. Terminology of structures in embryonic shells of Mesozoic ammonites. J. Paleontol. 56:12931295.Google Scholar
McCrea, J. M. 1950. On the isotope chemistry of carbonates and a paleotemperature scale. J. Chem. Physics. 18(6):849857.Google Scholar
Martin, A. W., Catala-Stuki, I., and Ward, P. D. 1978. The growth rate and reproductive behavior of Nautilus macromphalus. N. Jb. Geol. Paläont. Abh. 156:207225.Google Scholar
Meek, F. B. 1876. A report on the invertebrate Cretaceous and Tertiary fossils of the Upper Missouri country. U.S. Geol. Surv. Territ. Rept. 9:1629.Google Scholar
Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: A re-evaluation. Mar. Biol. 10:193213.Google Scholar
Miller, A. K. 1947. Tertiary nautiloids of the Americas. Geol. Soc. Am. Mem. 23. 234 pp.Google Scholar
Miller, A. K. 1949. The last surge of the nautiloid cephalopods. Evolution. 3:231238.Google Scholar
Morton, S. G. 1834. Synopsis of the organic remains of the Cretaceous group of the United States, illustrated by nineteen plates; to which is added an appendix, containing a tabular view of the Tertiary fossils hitherto discovered in North America. 88 pp., 19 pls. Philadelphia.Google Scholar
Naef, A. 1923. Die Cephalopoden. Fauna e Flora di Golfo di Napoli. Stazione Zool. Napoli Mon. 35(pt. 1, 1):5578.Google Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. Pp. 73108. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Stenzel, H. B. 1964. Living Nautilus. Pp. K59K93. In: Moore, R. C, ed. Treatise on Invertebrate Paleontology, Part K. Univ. Kansas Press and Geol. Soc. Amer.; Lawrence, Kans.Google Scholar
Tanabe, K., Obata, I, Fukuda, Y., and Futakami, M. 1979. Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bull. Nat. Sci. Mus. Ser. C (Geol.). 5(4):153176.Google Scholar
Taylor, B. E. and Ward, P. D. 1983. Stable isotope studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeogr., Palaeoclimat., Palaeoecol. 41:116.Google Scholar
Teichert, C. 1967. Major features of cephalopod evolution. Pp. 162201. In: Teichert, C. and Yochelson, E. L., eds. Essays in Paleontology and Stratigraphy. Spec. Publ. 2. Univ. Kansas Press; Lawrence, Kans.Google Scholar
Teichert, C. and Moore, R. C. 1964. Classification and stratigraphic distribution. Pp. K94K106. In: Moore, R. C, ed. Treatise on Invertebrate Paleontology, Part K. Univ. Kansas Press and Geol. Soc. Am.; Lawrence, Kans.Google Scholar
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25:145.CrossRefGoogle ScholarPubMed
Thorson, G. 1966. Some factors influencing the recruitment and establishment of marine benthic communities. Neth. J. Sea Res. 3:267293.Google Scholar
Turekian, K. K. and Armstrong, R. L. 1961. Chemical and mineralogical composition of fossil molluscan shells from the Fox Hills Formation, South Dakota. Bull. Geol. Soc. Am. 72:18181828.Google Scholar
Vergnaud-Grazzini, C. 1976. Non-equilibrium isotopic composition of shells of planktonic foraminifera in the Mediterranean Sea. Palaeogeogr., Palaeoclimat., Palaeoecol. 20:263276.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. 332 pp. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve?. S. Afr. J. Sci. 76:6184.Google Scholar
Waage, K. M. 1968. The Type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Part 1. Stratigraphy and Paleoenvironments. Peabody Mus. Nat. Hist. (Yale Univ.) Bull. 27. 175 pp.Google Scholar
Waagen, W. 1875. The Cephalopoda. India Geol. Surv., Mem. Palaeont. Indica. Ser. 9. Jurassic fauna of Kutch. 1:124, 60 pls.Google Scholar
Wefer, G. and Killingley, J. S. 1980. Growth histories of strombid snails from Bermuda recorded in their O-18 and C-13 profiles. Mar. Biol. 60:129135.CrossRefGoogle Scholar
Westermann, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci. Contr. R. Ontario Mus. 78:119.Google Scholar
Westermann, G. E. G. 1973. Strength of concave septa and depth limits of fossil cephalopods. Lethaia. 6:383403.Google Scholar
Willey, A. 1897a. On the nepionic shell of recent Nautilus (Zoological Observations in the South Pacific) Q.J. Micro. Sci. (n.s.) 39:219231.Google Scholar
Willey, A. 1897b. The embryology of the Nautilus. Nature. 55:402403.Google Scholar
Zhuravleva, F. A. 1959. Ob embryonalnykh stadyakh razvitiya nautiloidei. Akad. Nauk. SSSR Paleontol. Zh. 1:3648.Google Scholar