Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T14:22:52.909Z Has data issue: false hasContentIssue false

Crises in the Devonian history of the rugose corals

Published online by Cambridge University Press:  08 February 2016

William A. Oliver Jr.
Affiliation:
U.S. Geological Survey, E-305 National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560
A. E. H. Pedder
Affiliation:
Geological Survey of Canada, 3303 Thirty-third Street, NW, Calgary, Alberta T2L 2A7, Canada

Abstract

Detailed analysis of the stratigraphic ranges of Devonian rugose coral genera within the Old World and Eastern Americas Realms gives new information on faunal extinctions and other bioevents in both realms. Various origination and extinction metrics are calculated from tabulations of occurrences in each stage. The most significant faunal changes were near or at the ends of the Lochkovian and Frasnian stages. The former marks the gradual transition from dominance by Silurian families and genera to the characteristic Devonian coral assemblages; the latter marks the virtual extinction of the Devonian families and genera. Other coral events are related to the two major changes.

The data provide new bases for comparing the histories of the two realms. Most of the events are recorded in both, giving support to previous suggestions that the causes were worldwide. The coral record shows an increase (probably episodic) in environmental deterioration persisting through the Middle Devonian and culminating in extinction at the end of the Frasnian. Eustatic sea level fluctuations may have caused the precursor events and a bolide impact may have caused the end-Frasnian extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bayer, U., and McGhee, G. R. 1986. Cyclic patterns in the Paleozoic and Mesozoic: implications for time scale calibrations. Paleoceanography 1:383402.CrossRefGoogle Scholar
Bayer, U., and McGhee, G. R. 1989. Periodicity of Devonian sedimentary and biological perturbations: implications for the Devonian timescale. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1989:116.CrossRefGoogle Scholar
Benton, M. J. 1986. More than one extinction event in the Late Triassic mass extinction. Nature (London) 321:857861.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Buggisch, W. 1991. The global Frasnian–Famennian “Kellwasser” Event. Geologische Rundschau 80:4972.CrossRefGoogle Scholar
Chlupáč, I., and Kukal, Z. 1986. Reflection of possible global Devonian events in the Barrandian area, C.S.S.R. Pp. 169179in Walliser, O., ed. Global bio-events. Lecture notes in Earth Sciences 8. Springer, Berlin.CrossRefGoogle Scholar
Claeys, P., Casier, J.-G., and Margolis, S. V. 1992. Microtites and mass extinctions: evidence for a Late Devonian asteroid impact. Science 257:11021104.CrossRefGoogle ScholarPubMed
Copper, P. 1986. Frasnian/Famennian mass extinction and coldwater oceans. Geology 14:835838.2.0.CO;2>CrossRefGoogle Scholar
Geldsetzer, H. H. J., Goodfellow, W. D., McLaren, D. J., and Orchard, M. J. 1987. Sulfur-isotope anomaly associated with the Frasnian–Famennian extinction, Medicine Lake, Alberta, Canada. Geology 15:393396.2.0.CO;2>CrossRefGoogle Scholar
Gilinsky, N. L. 1991. The pace of taxonomic evolution. Pp. 157174in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Paleontological Society Short Courses in Paleontology 4. Paleontological Society, Knoxville, Tenn.Google Scholar
Goodfellow, W. D., Gelsetzer, H. H. J., McLaren, D. J., Orchard, M. J., and Klapper, G. 1988. The Frasnian–Famennian extinction: current results and possible causes. Pp. 921in McMillan, N. J., Embrie, A. F., and Glass, D. J., eds. Devonian of the world, Vol. 3. Canadian Society of Petroleum Geologists Memoir 14. Calgary, Alberta, Canada.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale, 1989. Cambridge University Press.Google Scholar
House, M. R. 1985. Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature (London) 313:1722.CrossRefGoogle Scholar
House, M. R. 1989. Analysis of mid-Palaeozoic extinctions. Bulletin de la Société beige de Géologie 98-2:99107.Google Scholar
House, M. R. 1991. Devonian sedimentary microrhythms and a Givetian time scale. Proceedings of the Ussher Society 7:392395.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96:567587.2.0.CO;2>CrossRefGoogle Scholar
McGhee, G. R. Jr. 1988. The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology 14:250257.CrossRefGoogle Scholar
McGhee, G. R. Jr. 1989. Catastrophes in the history of life. Pp. 2650in Allen, K. C. and Briggs, D. E. G., eds. Evolution and the fossil record. Belhaven, Londonand Smithsonian Institution Press, Washington (1990).Google Scholar
McGhee, G. R. Jr. 1991. Extinction and diversification in the Devonian Brachiopoda of New York State: no correlation with sea level? Historical Biology 5:215227.CrossRefGoogle Scholar
McGhee, G. R. Jr., Bayer, U., and Seilacher, A. 1991. Biological and evolutionary responses to transgressive-regressive cycles. Pp. 696708in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
McLaren, D. J. 1982. Frasnian–Famennian extinctions. Geological Society of America Special Paper 190:477484.CrossRefGoogle Scholar
McLaren, D. J., and Goodfellow, W. D. 1990. Geological and biological consequences of giant impacts. Annual Review of Earth and Planetary Sciences 18:123171.CrossRefGoogle Scholar
Menning, M. 1989. A synopsis of numerical time scales 1917-1986. Episodes 12:35.CrossRefGoogle Scholar
Odin, G.-S., and Odin, C. 1990. Échelle numérique des temps géologiques. Géochronique 35:1221.Google Scholar
Oliver, W. A. Jr. 1977. Biogeography of Late Silurian and Devonian rugose corals. Palaeogeography, Palaeoclimatology, Palaeoecology 22:85135.CrossRefGoogle Scholar
Oliver, W. A. Jr. 1980. Corals in the Malvinokaffric Realm. Münstersche Forschungen zur Geologie und Paläontologie 52:1327.Google Scholar
Oliver, W. A. Jr. 1990. Extinctions and migrations of Devonian rugose corals in the Eastern Americas Realm. Lethaia 23:167178.CrossRefGoogle Scholar
Oliver, W. A. Jr., and Chlupáč, I. 1991. Defining the Devonian: 1979-1989. Lethaia 24:119122.CrossRefGoogle Scholar
Oliver, W. A. Jr., and Pedder, A. E. H. 1979. Ruguse corals in Devonian stratigraphical correlation. Palaeontological Association Special Papers in Palaeontology 23:233248.Google Scholar
Oliver, W. A. Jr., and Pedder, A. E. H. 1984. Devonian rugose coral biostratigraphy with special reference to the Lower–Middle Devonian boundary. Geological Survey of Canada Paper 84-1A:449452.Google Scholar
Oliver, W. A. Jr., and Pedder, A. E. H. 1989. Origins, migrations, and extinctions of Devonian Rugusa on the North American Plate. Association of Australasian Palaeontologists Memoir 8:231237.Google Scholar
Pedder, A. E. H. 1982. The rugose coral record across the Frasnian/Famennian boundary. Pp. 485489in Silver, L. T. and Schultz, P. H., eds., Geological implications of impacts of large asteroids and comets on the earth. Geological Society of America Special Paper 190, Boulder, Colo.CrossRefGoogle Scholar
Roth, P. H. 1987. Mesozoic calcareous nannofossil evolution: relation to paleoceanographic events. Paleoceanography 2:601611.CrossRefGoogle Scholar
Scrutton, C. T. 1988. Patterns of extinction and survival in Palaeozoic corals. Pp. 6588in Larwood, G. P., ed. Extinction and survival in the fossil record. Systematic Association Special Volume 34. Clarendon Press, Oxford.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:233251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1982. Mass extinctions in the Paleozoic oceans: a review. Geological Society of America Special Paper 190:283289, Boulder, Colo.CrossRefGoogle Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74:93114.CrossRefGoogle Scholar
Sorauf, J. E. 1989. Rugosa and the Frasnian–Famennian extinction event: a progress report. Association of Australasian Paleontologists Memoir 8:327338.Google Scholar
Sorauf, J. E., and Pedder, A. E. H. 1986. Late Devonian rugose corals and the Frasnian–Famennian crisis. Canadian Journal of Earth Sciences 23:12651287.CrossRefGoogle Scholar
Wang, K., Orth, C. J., Attrep, M. Jr., Chatterton, B. D. E., Hou, H., and Geldsetzer, H. H. J. 1991. Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in south China. Geology 19:776779.2.3.CO;2>CrossRefGoogle Scholar
Ziegler, W. 1978. Devonian. Pp. 337339in Cohee, G. V., Glaessner, M. F., and Hedberg, H. D., eds. Contributions to the geologic time scale. American Association of Petroleum Geologists Studies in Geology 6. Tulsa, Okla.Google Scholar