Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T09:12:23.727Z Has data issue: false hasContentIssue false

Abyssal traces and megafauna: comparison of productivity, diversity and density in the Arctic and Antarctic

Published online by Cambridge University Press:  08 April 2016

Jennifer A. Kitchell
Affiliation:
Department of Geology, University of Wisconsin-Madison; Madison, Wisconsin 53706
James F. Kitchell
Affiliation:
Department of Zoology, University of Wisconsin-Madison; Madison, Wisconsin 53706
G. Leonard Johnson
Affiliation:
Office of Naval Research, Arlington, Virginia 22217
Kenneth L. Hunkins
Affiliation:
Lamont-Doherty Geological Observatory, Palisades, New York 10964

Abstract

The megafauna and associated behavioral traces of two deep-sea benthic environments, the central Arctic and Antarctic, with a surface primary productivity differential of 104 were compared to assess the role of food availability in foraging strategy and community structure. Bottom photographs, analyzed for megafauna and trace density and diversity at comparable depths in the Arctic Canada Basin and the Antarctic Bellingshausen Basin, indicated that trace frequency was inversely proportional to organism density but that trace diversity directly reflected organism diversity. Those traces identified in the fossil record to represent efficient foraging strategies, i.e., the Nereites facies, were conspicuously absent at all depths in the Arctic and present at all depths in the Antarctic, in contradiction of the paradigm of increasing behavioral complexity and sediment exploitation as food availability decreases. Presence or absence of surface-grazing organisms seems to exert a greater influence on trace diversity than depth or nutrient supply. Trace density, however, may reflect episodic sedimentation events which intermittently influence the deep-sea trophic regime.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bourne, D. W. and Heezen, B. C. 1965. A wandering enteropneust from the abyssal Pacific, and the distribution of “spiral” tracks on the sea floor. Science. 150:6063.Google Scholar
Campbell, J. S. and Clark, D. L. 1977. Pleistocene turbidites of the Canada Abyssal Plain of the Arctic Ocean. Sedimentology. 47:657670.Google Scholar
Chamberlain, C. K. 1971a. Morphology and ethology of trace fossils from the Ouachita Mountains, southeastern Oklahoma. J. Paleontol. 45:212246.Google Scholar
Chamberlain, C. K. 1971b. Bathymetry and paleoecology of Ouachita geosyncline of southeastern Oklahoma as determined by trace fossils. Am. Assoc. Petrol. Geol. Bull. 55:3450.Google Scholar
Chamberlain, C. K. and Clark, D. L. 1973. Trace fossils and conodonts as evidence for deep-water deposits in the Oquirrh Basin of Central Utah. J. Paleontol. 47:663682.Google Scholar
Clark, D. L. 1975. Geological history of the Arctic Ocean Basin. Can. Soc. Petrol. Geol., Mem. 4:501524Google Scholar
Craddock, C. and Hollister, C. D. 1976. Geologic evolution of the Southeast Pacific Basin. Initial Rep. Deep Sea Drilling Proj. 35:723743.Google Scholar
Dangeard, L. 1974. Traces organiques profondes comparables à celles du flysch. Sci. de la Terre. 19:381388.Google Scholar
Ewing, M. and Davis, R. A. 1967. Lebensspuren photographed on the ocean floor. Pp. 259294. In: Hersey, J. B. ed. Deep-Sea Photography. Johns Hopkins Press; Baltimore, Maryland.Google Scholar
Fell, H. B. 1967. Biological applications of sea-floor photography. Pp. 207221. In: Hersey, J. B. ed. Deep-Sea Photography. Johns Hopkins Press; Baltimore.Google Scholar
Galt, J. A. 1967. Currents measurements in the Canadian Basin of the Arctic Ocean, summer, 1965. Univ. of Wash. Tech. Rep. 184:117.Google Scholar
Grassle, J. F., Sanders, H. L., Hessler, R. R., Rowe, G. T., and McLellan, T. 1975. Pattern and zonation: a study of the bathyal megafauna using the research submersible Alvin. Deep-Sea Res. 22:457481.Google Scholar
Hantzschel, W. 1970. Star-like trace fossils. Pp. 201214. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool, England.Google Scholar
Hantzschel, W. 1975. Trace fossils. Pp. 35122. In: Teichert, K., ed. Treatise on Invertebrate Paleontology, Part W, Supplement I, Trace Fossils. Geol. Soc. Am. and Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Heezen, B. C. and Hollister, C. D. 1971. The Face of the Deep. 659 pp. Oxford Univ. Press; New York.Google Scholar
Heezen, B. C., Tharp, M., and Bentley, C. R. 1972. Morphology of the sea floor. Folio 16, Antarctic Map Folio Ser. Am. Geogr. Soc.; New York.Google Scholar
Hollister, C. D. and Heezen, B. C. 1967. The floor of the Bellingshausen Sea. Pp. 177189. In: Hersey, J. B., ed. Deep-Sea Photography. Johns Hopkins Press; Baltimore, Maryland.Google Scholar
Hunkins, K. 1968. Geomorphic provinces of the Arctic Ocean. Pp. 365376. In: Sater, A. A., ed. Arctic Drifting Stations. Arctic Inst. of North Am.; Washington, D.C.Google Scholar
Hunkins, K., Ewing, M., Heezen, B. C., and Menzies, R. J. 1960. Biological and geological observations on the first photographs of the Arctic Ocean deep-sea floor. Limnol. Oceanogr. 5:154161.Google Scholar
Hunkins, K., Mathieu, G., Teeter, S., and Gill, A. 1970. The floor of the Arctic Ocean in photographs. Arctic. 23:175189.CrossRefGoogle Scholar
Kitchell, J. A., Kitchell, J. F., Clark, D. L., and Dangeard, L.In press. Deep-sea foraging behavior: its bathymetric potential in the fossil record. Science.Google Scholar
Ksiazkiewicz, M. 1968. On some problematic organic traces from the flysch of the Polish Carpathians (part III). Ann. Soc. Geol. Pol. 38:3.Google Scholar
Ksiazkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians. Pp. 283322. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House Press; Liverpool, England.Google Scholar
Ksiazkiewicz, M. 1975. Bathymetry of the Carpathian Flysch Basin. Acta Geol. Pol. 25:309367.Google Scholar
Lucas, G. and Rech-Frollo, M. 1965. “Traces en rosette” du flysch écoène de Jaca (Aragon). Essai d'interpretation. Bull. Soc. Geol. Fr. Ser. 76:163170.Google Scholar
McIntyre, A. D. 1956. The use of trawl, grab and camera in estimating marine benthos. J. Mar. Biol. Assoc. U. K. 35:419429.CrossRefGoogle Scholar
Menzies, R. J., George, R. Y., and Rowe, G. T. 1973. Abyssal Environment and Ecology of the World Oceans. 488 pp. Wiley; New York.Google Scholar
Nowak, W. 1957. Quelques hiéroglyphes étoilés des Karpates de Flysch extérieures. Ann. Soc. Geol. Pol. 26:187224.Google Scholar
Osgood, R. G. 1970. Trace fossils of the Cincinnati area. Paleontol. Am. 6:281444.Google Scholar
Riley, J. P. and Chester, R. 1976. 414 pp. Chemical Oceanography, Vol. 6. Academic Press; London.Google Scholar
Seilacher, A. 1959. Zur okologischen charakteristik von flysch und molasse. Eclogae Geol. Helvetiae. 51:10621078.Google Scholar
Seilacher, A. 1967a. Fossil behavior. Sci. Am. 217:7280.Google Scholar
Seilacher, A. 1967b. Bathymetry of trace fossils. Mar. Geol. 5:413428.CrossRefGoogle Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. N. Jb. Geol. Palaontol. Mh., 1974:233245.Google Scholar
Thorndike, E. M. 1959. Deep-sea cameras of the Lamont Observatory. Deep-Sea Res. 5:234237.Google Scholar
Tucholke, B. E., Hollister, C. D., Weaver, F. M., and Vennum, W. R. 1976. Continental rise and abyssal plain sedimentation in the Southeast Pacific Basin-Leg 35 Deep Sea Drilling Project. Initial Rep. Deep Sea Drilling Proj. 35:359400.Google Scholar
Vyalov, O. S. 1971. Rare Mesozoic problematica from the Pamir and Caucasus. Paleontol. Sbornik, Vyp. 7:8593.Google Scholar
Vyalov, O. S. and Zenkevitch, N. L. 1961. Trail of a crawling animal on the floor of the Pacific Ocean. Akad. Nauk. SSR, Ser. Geol. 1:5258.Google Scholar
Wigley, R. L. and Emery, K. O. 1967. Benthic animals, particularly Hyalinaecia (Annelida) and Ophiomusium (Echinodermata), in sea-bottom photographs from the continental slope. Pp. 235250. In: Hersey, J. B., ed. Deep-Sea Photography. Johns Hopkins Press; Baltimore, Maryland.Google Scholar