Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T00:22:47.623Z Has data issue: false hasContentIssue false

Punctuated anagenesis and the importance of stratigraphy to paleobiology

Published online by Cambridge University Press:  08 February 2016

Norman MacLeod*
Affiliation:
Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08544

Abstract

The depositional history of Upper Miocene through Recent sediments from DSDP Site 214 (Ninetyeast Ridge, Indian Ocean) is reexamined. Samples of the Globorotalia tumida planktic foraminiferal lineage, originally obtained from these sediments by Malmgren et al. (1983), serve as the empirical basis for the recognition of punctuated anagenesis as a distinct mode of phenotypic evolution and have been the subject of numerous additional investigations. However, conclusions reached by previous authors depend strictly on the validity of the original chronostratigraphic interpretation of these sediments. Graphic correlation analysis of first- and last-appearance datum levels for a total of 41 planktic foraminiferal, radiolarian, and calcareous nannoplankton taxa provides evidence for a more complex depositional history at this deep-sea site than originally believed. Based on a conservative model of variation in the pattern of sediment accumulation rates, the lowermost portion of the studied section (6.5-4.3 Ma) represents an interval of temporally condensed sediment accumulation (1.88 cm/1,000 yr) followed by an interval (4.3-2.8 Ma) of temporally expanded sediment accumulation (3.97 cm/1,000 yr). This interval, in turn, is followed by a depositional hiatus or an extremely condensed interval, at least 800,000 yr in duration, which is followed by another relatively condensed (1.36 cm/1,000 yr) interval from 2.0 Ma-Recent. Although this chronostratigraphic reinterpretation deviates substantially from the original, which recognized Site 214 as being both temporally continuous and exhibiting a constant sediment accumulation rate from the Upper Miocene through the Upper Pliocene, it is more consistent with expectations based on Neogene eustatic sea-level fluctuations and global surveys of Neogene hiatus distributions. Age assignments for samples of the Gr. tumida lineage based on the revised chronostratigraphic model reverse some findings of previous investigators with respect to the distinctiveness of phenotypic evolutionary rates characterizing the transition from Gr. plesiotumida to Gr. tumida. Finally, a brief survey of similar marine invertebrate lineage studies shows that changes in the rate of phenotypic evolution often appear to coincide with major physical changes in the paleoceanographic environment. Such correspondences may be due, at least in part, to the effect of these environmental changes on sediment accumulation rates. Paleobiologists who seek to understand patterns of phenotypic change over time must remove the effects of variations in sediment accumulation rates from their data before evolutionary hypothesis testing and remain aware of the limitations imposed on their interpretations by the uncertain nature of chronostratigraphic inference.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barron, J. A., Nigrini, C. A., Pujos, A., Saito, T., Theyer, F., Thomas, E., and Weinreich, N. 1985. Synthesis of biostratigraphy, central equatorial Pacific, Deep-Sea Drilling Project Leg 85. Pp. 905934. In Initial Reports of the Deep-Sea Drilling Project, Vol. 85. Government Printing Office; Washington, D.C.Google Scholar
Berger, W. H. 1970. Biogenous deep-sea sediments: fractionation by deep-sea circulation. Geological Society of America Bulletin 81:13851402.CrossRefGoogle Scholar
Berger, W. H., and Winterer, E. L. 1974. Plate stratigraphy and the fluctuating carbonate line. International Association of Sedimentologists, Special Publication 1:1148.Google Scholar
Berggren, W.A., Lohmann, G. P., and Poore, R. Z. 1974. Shore laboratory report on Cenozoic planktonic foraminifera: Leg 22. Pp. 635656. In Initial Reports of the Deep-Sea Drilling Project, Vol. 22. U.S. Government Printing Office; Washington, D.C.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin 96:14071418.2.0.CO;2>CrossRefGoogle Scholar
Bookstein, F. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13(4):446464.CrossRefGoogle Scholar
Bookstein, F. 1988. Random walks and the biometrics of morphological characters. Pp. 369398, In Hecht, M. K., and Wallace, B. (eds.), Evolutionary Biology, Vol. 23. Plenum; New York.CrossRefGoogle Scholar
Brinkmann, R. 1928. Statistisch-phylogenetische Untersuchungen an Ammoniten. Verhandlungen 5th. Internationaler Kongress Verebungswissenschaft, Berlin Supplement I:496513.Google Scholar
Brinkmann, R. 1929. Statistisch-biostratigraphische Untersuchungen an mittlejurassischen Ammoniten über Artbegriff und Stammesenwicklung. Abhandlungen der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematiks-Physik. Series K. 13(3):1249.Google Scholar
Carr, T. R., and Baum, G. R. 1987. Condensed sections and apparent changes in evolutionary rates. Geological Society of America, Abstracts with Programs 19(7):612.Google Scholar
Charlesworth, B. 1984. Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10(3):308318.CrossRefGoogle Scholar
Cracraft, J. 1981. Pattern and process in paleobiology: the role of cladistic analysis in systematic paleontology. Paleobiology 7:456468.CrossRefGoogle Scholar
Cubitt, J. M., and Reyment, R. A. 1982. Quantitative Stratigraphic Correlation. John Wiley and Sons; New York.Google Scholar
Dowsett, H. 1989. Application of the graphic correlation method to Pliocene marine sequences. Marine Micropaleontology 14:332.CrossRefGoogle Scholar
Edwards, L. E. 1983. Insights on why graphic correlation (Shaw's method) works. Journal of Geology 92:583587.CrossRefGoogle Scholar
Edwards, L. E. 1989. Supplemented graphic correlation: a powerful tool for paleontologists and nonpaleontologists. Palaios 4:127143.CrossRefGoogle Scholar
Eldredge, N., and Novacek, M. J. 1985. Systematics and paleobiology. Paleobiology 11:6575.CrossRefGoogle Scholar
Futuyma, D. J. 1988. Strum und drang and the evolutionary synthesis. Evolution 42:217226.CrossRefGoogle Scholar
Gartner, S. 1974. Nannofossil biostratigraphy. Leg 22. Pp. 577600. In Initial Reports of the Deep-Sea Drilling Project, Vol. 22. U.S. Government Printing Office; Washington, D.C.Google Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159161.CrossRefGoogle ScholarPubMed
Gould, S. J. 1980. The promise of paleobiology as a nomothetic evolutionary discipline. Paleobiology 6:96118.CrossRefGoogle Scholar
Gould, S. J. 1984. Smooth curve of evolutionary rate: a psychological and mathematical artifact. Science 226:994996.CrossRefGoogle Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.CrossRefGoogle Scholar
Gradstein, F. P., Agterberg, F. P., Brower, J. C., and Schwarzacher, W. S. 1985. Quantitative Stratigraphy. D. Reidel; Dordrecht.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561166.CrossRefGoogle ScholarPubMed
Hazel, J. E. 1989. Chronostratigraphy of Upper Eocene microspherules. Palaios 4:318329.CrossRefGoogle Scholar
Hazel, J. E., Edwards, L. E., and Bybell, L. M. 1984. Significant unconformities and the hiatuses represented by them in the Paleogene of the Atlantic and Gulf Coastal Province. American Association of Petroleum Geologists Memoir 36:5966.Google Scholar
Hodell, D. A., Benson, R. H., Kennett, J. P., and Bied, K.R.-E. 1989. Stable isotope stratigraphy of latest Miocene sequences in northwest Morocco: the Bou Regreg section. Paleoceanography 4(4):467482.CrossRefGoogle Scholar
Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. 1987. Comet showers as a cause of mass extinctions. Nature 329:118126.CrossRefGoogle Scholar
Jablonski, D. 1986. Causes and consequences of mass extinction: a comparative approach. Pp. 183229. In Elliot, D. K. (ed.), Dynamics of Extinction. John Wiley and Sons; New York.Google Scholar
Jablonski, D. 1987. Heritability at the species level: an analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.CrossRefGoogle ScholarPubMed
Johnson, D. A. 1974. Radiolaria from eastern Indian Ocean, DSDP Leg 22. Pp. 521576. In Initial Reports of the Deep-Sea Drilling Project, Vol. 22. U.S. Government Printing Office; Washington, D. C.Google Scholar
Kauffman, E. G. 1986. High resolution event stratigraphy: regional and global Cretaceous bio-events. Pp. 279335. In Walliser, O. H. (ed.), Lecture Notes in Earth Sciences 8. Springer; New York.Google Scholar
Kauffman, E. G., and Hazel, J. E. 1977. Concepts and Methods in Biostratigraphy. Dowden, Hutchinson and Ross; Stroudsbourg, Pennsylvania.Google Scholar
Keller, G. 1986. Stepwise mass extinctions and impact events: Late Eocene to Early Oligocene. Marine Micropaleontology 10:267293.CrossRefGoogle Scholar
Keller, G., and Barron, J. A. 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geological Society of America Bulletin 94:590613.2.0.CO;2>CrossRefGoogle Scholar
Keller, G., and Barron, J. A. 1987. Paleodepth distribution of Neogene deep-sea hiatuses. Paleoceanography 2:697713.CrossRefGoogle Scholar
Kidwell, S., and Aigner, T. 1985. Sedimentary dynamics of complex shell beds: implications for ecologic and evolutionary patterns. Pp. 383395. In Bayer, U., and Seilacher, A. (eds.), Sedimentary and Evolutionary Cycles. Springer-Verlag; Berlin.Google Scholar
Kitchell, J. A., Estabrook, G., and MacLeod, N. 1987. Testing for equality of evolutionary rates. Paleobiology 13:272285.CrossRefGoogle Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314334.CrossRefGoogle ScholarPubMed
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatium. Paleobiology 12:175189.CrossRefGoogle Scholar
Lohmann, G. P., and Malmgren, B. A. 1983. Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the late Pleistocene: gradual evolution or ocean change? Paleobiology 9:414421.CrossRefGoogle Scholar
Louitt, T. S., and Kennett, J. P. 1981. Australasian Cenozoic sedimentary cycles, global sea-level changes, and the deep-sea sedimentary record. Oceanologica Acta Special Publication 1981:4663.Google Scholar
Malmgren, B. A., and Berggren, W. A. 1987. Evolutionary changes in some Late Neogene planktonic foraminiferal lineages and their relationships to paleoceanographic changes. Paleoceanography 2:445456.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1984. Species formation through punctuated gradualism in planktonic foraminifera. Science 225:317319.CrossRefGoogle ScholarPubMed
Maynard Smith, J. 1984. Paleontology at the high table. Nature 309:401402.CrossRefGoogle Scholar
Miller, F. X. 1977a. Biostratigraphic correlation of the Mesaverde Group in southwestern Wyoming and northwestern Colorado. Pp. 117137. In Rocky Mountain Association of Geologists 1977 Symposium.Google Scholar
Miller, F. X. 1977b. The graphic correlation method in biostratigraphy. Pp. 165186. In Kauffman, E. G., and Hazel, J. E. (eds.), Concepts and Methods in Biostratigraphy. Dowden, Hutchinson and Ross; Stroudsburg, Pennsylvania.Google Scholar
Ness, G., Levi, S., and Couch, R. 1980. Marine magnetic anomaly time-scales for the Cenozoic and Late Cretaceous: a précis, critique, and synthesis. Review of Geophysics and Space Physics 18:753770.CrossRefGoogle Scholar
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature 330:248252.CrossRefGoogle Scholar
Pisias, N. G., Martinson, D. G., Moore, T. C. Jr., Shackleton, N. J., Prell, W., Hays, J., and Boden, G. 1984. High-resolution stratigraphic correlation of benthic isotopic records spanning the last 300,000 years. Marine Geology 56:119136.CrossRefGoogle Scholar
Pisias, N. G., Barron, J. A., and Dunn, D. A. 1985. Stratigraphic resolution of Leg 85: an initial analysis. Pp. 695708. In Initial Reports of the Deep-Sea Drilling Project, Vol. 85. Government Printing Office; Washington, D.C.Google Scholar
Prell, W. L., Imbrie, J., Martinson, D. G., Morley, J. J., Pisias, N. G., Shackleton, N. J., and Streeter, H. F. 1986. Graphic correlation of oxygen isotope stratigraphy: application to the Late Quaternary. Paleoceanography 1:137162.CrossRefGoogle Scholar
Raup, D., and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7:200215.CrossRefGoogle Scholar
Raup, D., and Crick, R. E. 1982. Kosmoceras: evolutionary jumps and sedimentary breaks. Paleobiology 8:90100.CrossRefGoogle Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.CrossRefGoogle Scholar
Raup, D., and Sepkoski, J. J. Jr. 1982. Mass extinctions and the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Raup, D., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Science 81:801805.CrossRefGoogle ScholarPubMed
Raup, D., and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science 231:833836.CrossRefGoogle ScholarPubMed
Raup, D. M., Gould, S. J., Schopf, T.J.M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.CrossRefGoogle Scholar
Reyment, R. A. 1982. Phenotypic evolution in a Cretaceous foraminifer. Evolution 36:11821199.CrossRefGoogle Scholar
Reyment, R. A. 1983. Phenotypic evolution in microfossils. Pp. 209254. In Hecht, M. K., Wallace, B., and Prance, G. T. (eds.), Evolutionary Biology, Vol. 16. Plenum; New York.CrossRefGoogle Scholar
Schopf, T.J.M. (ed.) 1972. Models in Paleobiology. Freeman Cooper & Co., San Francisco.Google Scholar
Sepkoski, J. J. Jr. 1987. Reply to Patterson and Smith. Nature 330:251252.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., and Raup, D. 1986. Periodicity in marine mass extinctions. Pp. 336. In Elliot, D. K. (ed.), Dynamics of Extinction. John Wiley & Sons; New York.Google Scholar
Shaw, A. B. 1964. Time in Stratigraphy. McGraw-Hill; New York.Google Scholar
Signor, P. W. III, and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America Special Paper 190:291296.CrossRefGoogle Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Pp. 127216. In Hecht, M. K., and Wallace, B. (eds.), Evolutionary Biology, Vol. 23. Plenum; New York.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of extinction above the species level. Proceedings of the National Academy of Science 72:646650.CrossRefGoogle Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.CrossRefGoogle Scholar
Sweet, W. 1979. Late Ordovician conodonts and biostratigraphy of the western Midcontinent province. Brigham Young University Geological Studies 26:4585.Google Scholar
Vail, P. R., Mitchum, R. M. Jr., and Thompson, S. III. 1977a. Seismic stratigraphy and global changes in sea level, part three: relative changes of sea level from coastal onlap. American Association of Petroleum Geologists Memoir 26:6382.Google Scholar
Vail, P. R., Mitchum, R. M. Jr., and Thompson, S. III. 1977b. Seismic stratigraphy and global changes in sea level, part four: global cycles of relative changes in sea level. American Association of Petroleum Geologists Memoir 26:8398.Google Scholar
Vail, P. R., Todd, R. G., and Sangree, J. B. 1977c. Seismic stratigraphy and global changes in sea level, part five: chronostratigraphic significance of seismic reflections. American Association of Petroleum Geologists Memoir 26:99116.Google Scholar