Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T06:56:34.076Z Has data issue: false hasContentIssue false

Mechanical and photosynthetic constraints on the evolution of plant shape

Published online by Cambridge University Press:  08 April 2016

Karl J. Niklas
Affiliation:
Section of Plant Biology, Cornell University, Ithaca, New York 14853
Vincent Kerchner
Affiliation:
Section of Plant Biology, Cornell University, Ithaca, New York 14853

Abstract

A computer model is presented which is capable of calculating both the photosynthetic efficiency (I) of any specified plant shape and the stress related to the total moment arm (M) imposed on vertical branching patterns. Computer simulations indicate that a flattened plant thallus and an erect branching growth habit are two plant shapes capable of optimizing photosynthetic efficiency during indeterminate growth. These two morphologies have geometric analogues in the dorsiventral thalli of some bryophytes and in the vertical axes of mosses and tracheophytes, respectively.

Extension of the model to complex, three-dimensional branching patterns indicates that I and I/M are maximized when branching is overtopped (treelike, with lateral branches on a main axis) and when lateral branching systems are planated (frondlike). Geometric alterations of branching patterns that result in optimization of I and I/M can be simulated by computer and are shown to be similar to morphologic alterations attending the early evolution of vascular land plants. It is suggested that a number of major evolutionary trends seen in Upper Silurian to Upper Devonian times can be expressed in terms of optimizing the display of photosynthetic tissues (I) or the balance between photosynthetic efficiency and incurred moment arms (I/M).

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, M. C. 1964. Studies of the woodland light climate. I. The photographic computation of light conditions. J. Ecol. 52:2741.Google Scholar
Archer, R. R. and Wilson, B. F. 1973. Mechanics of the compression wood response. II. On the location, action, and distribution of compression wood formation. Plant Physiol. 51:777782.CrossRefGoogle ScholarPubMed
Banks, H. P. 1968. The early history of land plants. Pp. 73107. In: Drake, E. T. ed. Evolution and Environment. Yale Univ. Press; New Haven.Google Scholar
Banks, H. P. 1972. The stratigraphic occurrence of early land plants. Palaeontology. 15:365377.Google Scholar
Bower, F. O. 1935. The Origin of a Land Flora. Macmillan; London.Google Scholar
Chaloner, W. G. and Sheerin, A. 1979. Devonian macrofloras. The Devonian System. Spec. Pap. Palaeontol. 23:145161.Google Scholar
Fisher, J. B. and Honda, H. 1979. Branch geometry and effective leaf area: a study of Terminalia-branching pattern. I. Theoretical trees. Am. J. Bot. 66:633644.Google Scholar
Gates, D. M. 1965. Energy, plants, and ecology. Ecology. 46:116.CrossRefGoogle Scholar
Gates, D.M. 1970. Physical and physiological properties of plants. Pp. 224252. In: Remote Sensing. Natl. Acad. Sci.; Washington, D.C.Google Scholar
Gibbs, J. B. and Patten, D. T. 1970. Plant temperatures and heat flux in a Sonoran Desert ecosystem. Oecologia (Berl.). 5:165184.Google Scholar
Goebel, K. 1889. Pflanzenbiologische Schilderungen. 1. Teil. Elwert; Marburg, Germany.Google Scholar
Hallé, F. R., Oldeman, A. A., and Tomlinson, P. B. 1978. Tropical Trees and Forests: An Architectural Analysis. Springer-Verlag; Heidelberg.Google Scholar
Honda, H. 1971. Description of the form of trees by the parameters of the tree-like body; effects of the branching angle and the branch length on the shape of the tree-like body. J. Theoret. Biol. 31:331338.Google Scholar
Honda, H., Tomlinson, P. B., and Fisher, J. B. 1981. Computer simulation of branch interaction and regulation of unequal flow rates in botanical trees. Am. J. Bot. 68:569585.CrossRefGoogle Scholar
Horsfield, K. 1967. Morphology of the human bronchial tree. M.D. thesis, Univ. Birmingham.Google ScholarPubMed
Konis, E. 1950. On the temperature of Opuntia joints. Palestine J. Bot., Jerusalem ser. 5:4655.Google Scholar
McMahon, T. A. and Kronauer, R. E. 1976. Tree structure: deducing the principle of mechanical design. J. Theoret. Biol. 59:443466.Google Scholar
Monsi, M. and Saeki, T. 1953. Uber den Lichtfactor in den Pflanzengesellschaften und seine Bedeutung fur die Staffproduktion. Jap. J. Bot. 14:2252.Google Scholar
Murray, C. D. 1926a. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Nat. Acad. Sci. 12:207214.Google Scholar
Murray, C. D. 1926b. The physiological principle of minimum work. II. Oxygen exchange in capillaries. Proc. Nat. Acad. Sci. 12:299304.CrossRefGoogle ScholarPubMed
Murray, C. D. 1926c. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9:835841.Google Scholar
Murray, C. D. 1927. A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol. 10:725729.Google Scholar
Niklas, K. J. 1976. The role of morphological biochemical reciprocity in early land plant evolution. Ann. Bot. (Lond.). 40:12391254.Google Scholar
Niklas, K. J. 1982. Computer simulations of early land plant branching morphologies: canalization of patterns during evolution. Paleobiology. 8:196210.Google Scholar
Niklas, K. J. and O'Rourke, T. D. 1982. Growth patterns of plants that maximize vertical growth and minimize internal stresses. Am. J. Bot. 69:13671374.CrossRefGoogle Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of land plants. Pp. 189. In: Hecht, M. K., Steere, W. C., and Wallace, B., eds. Evolutionary Biology. Vol. 12. Plenum; New York.Google Scholar
Nisbet, R. A. and Patten, D. T. 1974. Seasonal temperature acclimation of a prickly-pear cactus in south-central Arizona. Oecologia (Berl.). 15:345352.Google Scholar
Nobel, P. S. 1980. Interception of photosynthetically active radiation by cacti of different morphology. Oecologia (Berl.). 45:160166.CrossRefGoogle ScholarPubMed
Nobel, P. S. 1981. Influences of photosynthetically active radiation on cladode orientation, stem tilting, and height of cacti. Ecology. 62:982990.CrossRefGoogle Scholar
Nobel, P. S. 1982. Orientation, PAR interception, and nocturnal acidity increases for terminal cladodes of a widely cultivated cactus, Opuntia ficus-indica. Am. J. Bot. 69:14621469.Google Scholar
Rand, R. H. 1983. Fluid mechanics of green plants. Ann. Rev. Fluid Mech. 15:2945.Google Scholar
Rand, R. H. and Cooke, J. R. 1978. Fluid mechanics of phloem flow: an axisymmetric model. Trans. ASAE. 21:898900, 906.Google Scholar
Rand, R. H., Upadhyaya, S. K., and Cooke, J. R. 1980. Fluid dynamics of phloem flow. II. An approximate formula. Trans. ASAE. 23:581584.Google Scholar
Shinozaki, K. K. Y., Hozumi, K., and Kira, T. 1964. A quantitative analysis of plant form: the pipe model theory. I. Basic analysis. Jap. J. Ecol. 14:97105.Google Scholar
Thornley, J. H. M. 1977. A model of apical bifurcation applicable to trees and other organisms. J. Theoret. Biol. 64:165176.Google Scholar
Tomlinson, P. B. 1983. Tree architecture. Am. Sci. 71:141149.Google Scholar
Tomlinson, P. B. and Gill, A. M. 1973. Growth habits of tropical trees: some guiding principles. In: Meggers, B. J., Ayensu, E. S., and Duckworth, W. D., eds. Tropical Forest Ecosystems in Africa and South America. Smithsonian Inst. Press; Washington, D.C.Google Scholar
White, J. 1979. The plant as a metapopulation. Annu. Rev. Syst. Ecol. 10:109145.CrossRefGoogle Scholar
Whitney, G. G. 1976. The bifurcation ratio as an indicator of adaptive strategy in woody plant species. Bull. Torrey Bot. Club. 103:6772.Google Scholar
Wilson, B. F. and Archer, R. R. 1977. Reaction wood: induction and mechanical action. Annu. Rev. Plant Physiol. 28:2343.Google Scholar
Woodhouse, R. M., Williams, J. G., and Nobel, P. S. 1980. Leaf orientation, radiation interception, and nocturnal acidity increases by the CAM plant Agave deserti (Agavaceae). Am. J. Bot. 67:11791185.Google Scholar
Zimmermann, M. H. 1978. Structural requirements for optimal water conduction in tree systems. Pp. 517532. In: Tomlinson, P. B. and Zimmermann, M. H., eds. Tropical Trees as Living Systems. Cambridge Univ. Press; Cambridge.Google Scholar
Zimmermann, W. 1930. Der Baum in seinem phylogenetischen Werden. Berlin Bot. Ges. 48:3449.Google Scholar