Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T00:33:19.941Z Has data issue: false hasContentIssue false

Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence

Published online by Cambridge University Press:  08 February 2016

J. G. M. Thewissen
Affiliation:
Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44242
F. E. Fish
Affiliation:
Department of Biology, West Chester University, West Chester, Pennsylvania 19380

Abstract

We discuss a model for the origin of cetacean swimming that is based on hydrodynamic and kinematic data of modern mammalian swimmers. The model suggests that modern otters (Mustelidae: Lutrinae) display several of the locomotor modes that early cetaceans used at different stages in the transition from land to water. We use mustelids and other amphibious mammals to analyze the morphology of the Eocene cetacean Ambulocetus natans, and we conclude that Ambulocetus may have locomoted by a combination of pelvic paddling and dorsoventral undulations of the tail, and that its locomotor mode in water resembled that of the modern otter Lutra most closely. We also suggest that cetacean locomotion may have resembled that of the freshwater otter Pteronura at a stage beyond Ambulocetus.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnes, L. G., and Mitchell, E. D. 1978. Cetacea. Pp. 582602in Maglio, V. J. and Cooke, H. B. S., eds. Evolution of African mammals. Harvard University Press, Cambridge.CrossRefGoogle Scholar
Blake, R. W. 1981. Mechanics of drag-based mechanisms of propulsion in aquatic vertebrates. Symposium of the Zoological Society of London 48:2952.Google Scholar
Bose, N., Lien, J., and Ahia, J. 1990. Measurements of the bodies and flukes of several cetacean species. Proceedings of the Royal Society of London B 242:163173.Google Scholar
Crovetto, A. 1991. Etude osteometrique et anatomo-functionelle de la colonne vertebrale chez les grands cétaces. Investigations on Cetacea (Berne, Switzerland) 23:7189.Google Scholar
Fish, F. 1982a. Aerobic energetics of surface swimming in the muskrat Ondatra zibethicus. Physiological Zoology 55: 190–189.CrossRefGoogle Scholar
Fish, F. 1982b. Function of the compressed tail of surface swimming muskrats (Ondatra zibethicus). Journal of Mammalogy 63:591597.CrossRefGoogle Scholar
Fish, F. 1984. Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus). Journal of Experimental Biology 110:183201.CrossRefGoogle ScholarPubMed
Fish, F. 1993a. Comparison of swimming kinematics between terrestrial and semiaquatic opossums. Journal of Mammalogy 74:275284.CrossRefGoogle Scholar
Fish, F. 1993b. Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics. Australian Journal of Zoology 42:79101.CrossRefGoogle Scholar
Fish, F. 1993c. Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus). Journal of Experimental Biology 185:179193.CrossRefGoogle Scholar
Fish, F. 1994. Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). Journal of Mammalogy 75:989997.CrossRefGoogle Scholar
Fish, F. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. American Zoologist 36:628641.CrossRefGoogle Scholar
Fish, F. E., and Hui, C. A. 1991. Dolphin swimming—a review. Mammal Review 21:181195.CrossRefGoogle Scholar
Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844847.CrossRefGoogle Scholar
Hickman, G. C. 1984. Swimming ability of talpid moles, with particular reference to the semi-aquatic Condylura cristata. Mammalia 48:505513.CrossRefGoogle Scholar
Howell, A. B. 1930. Aquatic mammals: their adaptations to life in the water. Thomas, Springfield, Ill.Google Scholar
Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Institution of Washington Publication 482:1366.Google Scholar
Lighthill, M. J. 1969. Hydromechanics of aquatic animal propulsion. Annual Review of Fluid Mechanics 1:413446.CrossRefGoogle Scholar
Motani, R., You, H., and McGowan, C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature 382:347348.CrossRefGoogle Scholar
O'Leary, M. A., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). Journal of Vertebrate Paleontology 15:401430.CrossRefGoogle Scholar
Redford, K. H., and Eisenberg, J. F. 1992. Mammals of the Neotropics, Vol. 2. University of Chicago Press, Chicago.Google Scholar
Scott, W. B. 1888. On some new and little known creodonts. Journal of the Academy of Natural Sciences Philadelphia (Second Series) 9:155185.Google Scholar
Slijper, E. J. 1936. Die Cetaceen: Vergleichend-anatomisch und systematisch. Asher and Cie., Amsterdam.Google Scholar
Slijper, E. J. 1946. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen, Natuurkunde 62:1128.Google Scholar
Slijper, E. J. 1961. Locomotion and locomotory organs in whales and dolphins (Cetacea). Symposium of the Zoological Society of London 5:7794.Google Scholar
Stein, B. R. 1981. Comparative limb myology of two opossums, Didelphis and Chironectes. Journal of Morphology 169:113140.CrossRefGoogle ScholarPubMed
Tarasoff, F. J., Bisallon, A., Pierard, J., and Whitt, A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Canadian Journal of Zoology 50:915929.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. Journal of Mammalian Evolution 2:157184.CrossRefGoogle Scholar
Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210212.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Courier Forschungsinstitut Senckenberg 191:186.Google Scholar
Uhen, M. D. 1991. Vertebral proportions as indicators of locomotor style in mammals. Journal of Vertebrate Paleontology 11:59A. [Abstract.]Google Scholar
Watson, A. G., and Fordyce, R. E. 1993. Skeleton of two minke whales, Balaenoptera acutorostrata, stranded on the south-east coast of New Zealand. New Zealand Natural Sciences 20:114.Google Scholar
Webb, P. W. 1988. Simple physical principles and vertebrate aquatic locomotion. American Zoologist 28:709725.CrossRefGoogle Scholar
Webb, P. W., and Blake, R. W. 1985. Swimming. Pp.110128in Hildebrand, M., Bramble, D. M., Liem, K. F., Wake, D. B., eds. Functional vertebrate morphology. Belknap Press, Cambridge, Mass.CrossRefGoogle Scholar
Webb, P. W., and de Buffrénil, V. 1990. Locomotion in the biology of large aquatic vertebrates. Transactions of the American Fisheries Society 119:629641.2.3.CO;2>CrossRefGoogle Scholar
Williams, T. M. 1983. Locomotion in the North American mink, a semi-aquatic mammal. I. Swimming energetics and body drag. Journal of Experimental Biology 103:155168.CrossRefGoogle Scholar
Williams, T. M. 1989. Swimming by sea otters: adaptations for low energetic cost locomotion. Journal of Comparative Physiology A 164:815824.CrossRefGoogle ScholarPubMed
Zhou, X., Sanders, W. J., and Gingerich, P. D. 1992. Functional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contributions from the Museum of Paleontology, University of Michigan 28:289319.Google Scholar