Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T14:39:22.993Z Has data issue: false hasContentIssue false

Effects of the early Toarcian Oceanic Anoxic Event on ichthyosaur body size and faunal composition in the Southwest German Basin

Published online by Cambridge University Press:  06 November 2015

Erin E. Maxwell
Affiliation:
Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. Email: [email protected], [email protected].
Peggy Vincent
Affiliation:
Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. Email: [email protected], [email protected].

Abstract

The Early Jurassic Toarcian Oceanic Anoxic Event is considered one of the most dramatic environmental perturbations of the Mesozoic. An elevated extinction rate among marine invertebrates accompanied rapid environmental changes, but effects on large vertebrates are less understood. We examined changes in ichthyosaur body size in the Posidonia Shale of the Southwest German Basin spanning the extinction interval to assess how environmental changes and biotic crisis among prey species affected large reptiles. We report no species-level extinction among the ichthyosaurs coinciding with peak invertebrate extinction. Large ichthyosaurs were absent from the fauna during the extinction interval, but became more abundant in the immediate aftermath. Stenopterygius quadriscissus, the most abundant species during the extinction interval, increased in body size after the biotic event. Rapid invasion by large taxa occurred immediately following the extinction event at the end of the first ammonite zone of the early Toarcian. Greater mobility permitting exploitation of ephemeral resources and opportunistic feeding behavior may minimize the impacts of environmental change on large vertebrates.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., and Fürsich, F. T. 2000. Mass origination versus mass extinction: the biological contribution to the Pliensbachian-Toarcian extinction event. Journal of the Geological Society, London 157:5560.CrossRefGoogle Scholar
Aberhan, M., and Baumiller, T. K. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.CrossRefGoogle Scholar
Bailey, T. R., Rosenthal, Y., McArthur, J. M., Schootbrugge, B. v. d., and Thirwall, M. F. 2003. Paleoceanographic changes of the late Pliensbachian–early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters 212:307320.CrossRefGoogle Scholar
Bakker, R. T. 1977. Tetrapod mass extinctions– a model of the regulation of speciation rates and immigration by cycles of topographic diversity. Pp. 439468in A. Hallam, ed Patterns of evolution, as illustrated in the fossil record. Elsevier, Amsterdam.CrossRefGoogle Scholar
Benton, M. J., and Spencer, P. S. 1995. Fossil Reptiles of Great Britain. Chapman and Hall, London.CrossRefGoogle Scholar
Bernard, A., Lécuyer, C., Vincent, P., Amiot, R., Bardet, N., Buffetaut, E., Cuny, G., Fourel, F., Martineau, F., Mazin, J.-M., and Prieur, A. 2010. Regulation of body temperature by some Mesozoic marine reptiles. Science 328:13791382.CrossRefGoogle ScholarPubMed
Bond, D. P. G., and Wignall, P. B. 2014. Large igneous provinces and mass extinctions: an update. Pp. 2956. in G. Keller, and A. C. Kerr, eds. Volcanism, Impacts and Mass Extinctions: Causes and Effects. Geological Society of America Special Paper 505.Google Scholar
Boomer, I., Lord, A., and Crasquin, S. 2008. The extinction of the Metacopina (Ostracoda). Senckenbergiana Lethaea 88:4753.CrossRefGoogle Scholar
Borths, M. R., and Ausich, W. I. 2011. Ordovician-Silurian Lilliput crinoids during the end-Ordovician biotic crisis. Swiss Journal of Palaeontology 130:718.CrossRefGoogle Scholar
Böttcher, R. 1989. Über die Nahrung eines Leptopterygius (Ichthyosauria, Reptilia) aus dem süddeutschen Posidonienschiefer (Unterer Jura) mit Bemerkungen über den Magen der Ichthyosaurier. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 155:119.Google Scholar
Boulila, S., Galbrun, B., Huret, E., Hinnov, L. A., Rouget, I., Gardin, S., and Bartolini, A. 2014. Astronomical calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth and Planetary Science Letters 386:98111.CrossRefGoogle Scholar
Caine, H., and Benton, M. J. 2011. Ichthyosauria from the Upper Lias of Strawberry Bank, England. Palaeontology 54:10691093.CrossRefGoogle Scholar
Caswell, B. A., and Coe, A. L. 2013. Primary productivity controls on opportunistic bivalves during Early Jurassic deoxygenation. Geology 41:11631166.CrossRefGoogle Scholar
Caswell, B. A., and Coe, A. L. 2014. The impact of anoxia on pelagic macrofauna during the Toarcian Oceanic Anoxic Event (Early Jurassic). Proceedings of the Geologists' Association 125:383391.CrossRefGoogle Scholar
Caswell, B. A., Coe, A. L., and Cohen, A. S. 2009. New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction. Journal of the Geological Society, London 166:859872.CrossRefGoogle Scholar
Cecca, F., and Macchioni, F. 2004. The two early Toarcian (Early Jurassic) extinction events in ammonoids. Lethaia 37:3556.CrossRefGoogle Scholar
Chen, Z.-Q., and Benton, M. J. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5:375383.CrossRefGoogle Scholar
Cohen, A. S., Coe, A. L., Harding, S. M., and Schwark, L. 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32:157160.CrossRefGoogle Scholar
Danise, S., Twitchett, R. J., Little, C. T. S., and Clémence, M.-E. 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255. doi: 10.1371/journal.pone.0056255.CrossRefGoogle ScholarPubMed
Dera, G., Neige, P., Dommergues, J.-L., Fara, E., Laffont, R., and Pellenard, P. 2010. High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). Journal of the Geological Society, London 167:2133.CrossRefGoogle Scholar
Fara, E. 2000. Diversity of Callovian-Ypresian (Middle Jurassic-Eocene) tetrapod families and selectivity of extinctions at the K/T boundary. Geobios 33:387396.CrossRefGoogle Scholar
Fischer, V., Guiomar, M., and Godefroit, P. 2011. New data on the palaeobiogeography of Lower Jurassic marine reptiles: the Toarcian ichthyosaur fauna of the Vocontian Basin (SE France). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 261:111127.CrossRefGoogle Scholar
Fischer, V., Appleby, R. M., Naish, D., Liston, J., Riding, J. B., Brindley, S., and Godefroit, P. 2013. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs. Biology Letters 9:20130021. doi: 10.1098/rsbl.2013.0021.CrossRefGoogle ScholarPubMed
Fraguas, Á., and Young, J. R. 2011. Evolution of the coccolith genus Lotharingius during the late Pliensbachian-early Toarcian interval in Asturias (N Spain). Consequences of the early Toarcian environmental perturbations. Geobios 44:361375.CrossRefGoogle Scholar
Gómez, J. J., Goy, A., and Canales, M. L. 2008. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeography, Palaeoclimatology, Palaeoecology 258:2858.CrossRefGoogle Scholar
Hallam, A. 1986. The Pliensbachian and Tithonian events. Nature 319:765768.CrossRefGoogle Scholar
Hallam, A. 1987. Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of Northwest Europe. Paleobiology 13(2), 152168.CrossRefGoogle Scholar
Hallam, A. 1998. Speciation patterns and trends in the fossil record. Geobios 30(7), 921930.CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B. 1997. Mass Extinctions and their aftermath. Oxford University Press, Oxford.CrossRefGoogle Scholar
Harries, P. J., and Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154:3966.CrossRefGoogle Scholar
Harries, P. J., and Knorr, P. O. 2009. What does the ‘Lilliput effect’ mean? Palaeogeography, Palaeoclimatology. Palaeoecology 284:410.CrossRefGoogle Scholar
Hauff, B. 1921. Untersuchung der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs. Palaeontographica 64:142.Google Scholar
Hesselbo, S. P., and Pieńkowski, G. 2011. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin). Earth and Planetary Science Letters 301:365372.CrossRefGoogle Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V., and Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253:455470.CrossRefGoogle Scholar
Huttenlocker, A. K. 2014. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS ONE 9(2), e87553. doi: 10.1371/journal.pone.0087553.CrossRefGoogle ScholarPubMed
Huttenlocker, A. K., and Botha-Brink, J. 2013. Body size and growth patterns in the therocephalian Moschorhinus kitchingi (Therapsida: Eutheriodontia) before and after the end-Permian extinction in South Africa. Paleobiology 39:253277.CrossRefGoogle Scholar
Jenkyns, H. C. 1988. The Early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288:101151.CrossRefGoogle Scholar
Jenkyns, H. C., and Clayton, C. J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33:87106.CrossRefGoogle Scholar
Jenkyns, H. C., and Clayton, C. J.. 1997. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44:687706.CrossRefGoogle Scholar
Keller, T. 1976. Magen- und Darminhalte von Ichthyosauriern des süddeutschen Posidonienshiefers. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1976(4), 253320.Google Scholar
Keller, T. 1985. Quarrying and fossil collecting in the Posidonienschiefer (Upper Liassic) around Holzmaden. Geological Curator 4:193198.CrossRefGoogle Scholar
Kemp, D. B., Coe, A. L., Cohen, A. S., and Schwark, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature 437:396399.CrossRefGoogle ScholarPubMed
Küspert, W. 1982. Environmental change during oil shale deposition as deduced from stable isotope ratios. Pp. 482501in S. Einsele, and A. Seilacher, eds. Cyclic and Event Stratification. Springer, Berlin.CrossRefGoogle Scholar
Little, C. T. S., and Benton, M. J. 1995. Early Jurassic mass extinction: a global long-term event. Geology 23:495498.2.3.CO;2>CrossRefGoogle Scholar
Macchioni, F., and Cecca, F. 2002. Biodiversity and biogeography of middle-late Liassic ammonoids: implications for the early Toarcian mass extinction. Geobios 35(Mémoire Spécial 24), 165175.CrossRefGoogle Scholar
Maisch, M. W. 1998a. A new ichthyosaur genus from the Posidonia Shale (Lower Toarcian, Jurassic) of Holzmaden, SW-Germany with comments on the phylogeny of post-Triassic ichthyosaurs. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 209(1), 4778.CrossRefGoogle Scholar
Maisch, M. W. 1998b. Kurze Übersicht der Ichthyosaurier des Posidonienschiefers mit Bemerkungen zur Taxonomie der Stenopterygiidae und Temnodontosauridae. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 209(3), 401431.CrossRefGoogle Scholar
Maisch, M. W. 2008. Revision der Gattung Stenopterygius Jaekel, 1904 emend. von Huene, 1922 (Reptilia: Ichthyosauria) aus dem unteren Jura Westeuropas. Paleodiversity 1:227271.Google Scholar
Maxwell, E. E. 2012. New metrics to differentiate species of Stenopterygius (Reptilia: Ichthyosauria) from the Lower Jurassic of southwestern Germany. Journal of Paleontology 86:105115.CrossRefGoogle Scholar
McGhee, G. R. J., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.CrossRefGoogle Scholar
McGowan, C. 1974a. A revision of the latipinnate ichthyosaurs of the Lower Jurassic of England (Reptilia: Ichthyosauria). Life Sciences Contributions, Royal Ontario Museum 100:130.Google Scholar
McGowan, C. 1974b. A revision of the longipinnate ichthyosaurs of the Lower Jurassic of England, with descriptions of two new species (Reptilia: Ichthyosauria). Life Sciences Contributions, Royal Ontario Museum 97:137.Google Scholar
McGowan, C. 1979. A revision of the Lower Jurassic ichthyosaurs of Germany with descriptions of two new species. Palaeontographica Abt. A 166(4–6), 93135.Google Scholar
McGowan, C. 1989. Leptopterygius tenuirostris and other long-snouted ichthyosaurs from the English Lower Lias. Palaeontology 15:429436.Google Scholar
McGowan, C., and Motani, R. 2003. Ichthyopterygia. Verlag Dr. Friedrich Pfeil, München.Google Scholar
McKinney, M. L. 1990. Trends in body-size evolution. Pp. 75118in K. J. McNamara, ed Evolutionary Trends. University of Arizona Press, Tucson.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.CrossRefGoogle Scholar
Metcalfe, B., Twitchett, R. J., and Price-Lloyd, N. 2011. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 308:171180.CrossRefGoogle Scholar
Morten, S. D., and Twitchett, R. J. 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 284:2938.CrossRefGoogle Scholar
Mutter, R. J., and Neuman, A. G. 2009. Recovery from the end-Permian extinction event: evidence from “Lilliput Listracanthus. Palaeogeography, Palaeoclimatology, Palaeoecology 284:2228.CrossRefGoogle Scholar
Pancost, R. D., Crawford, N., Magness, S., Turner, A., Jenkyns, H. C., and Maxwell, J. R. 2004. Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. Journal of the Geological Society, London 161:353364.CrossRefGoogle Scholar
Quenstedt, F. A. 1856–1858. Der Jura. H. Laupp, Tübingen.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences 81:801805.CrossRefGoogle ScholarPubMed
Riegraf, W. v., Werner, G., and Lörcher, F. 1984. Der Posidonienschiefer. Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Lias ε). Ferdinand Enke, Stuttgart.Google Scholar
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., and Schwark, L. 2001. Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate”. Palaeogeography, Palaeoclimatology, Palaeoecology 169:273299.CrossRefGoogle Scholar
Rosales, I., Quesada, S., and Robles, S. 2004. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 203:253275.CrossRefGoogle Scholar
Ruhl, M., Bonis, N. R., Reichert, G.-J., Sinninghe Damsté, J. S., and Kürschner, W. M. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333:430434.CrossRefGoogle ScholarPubMed
Ruhl, M., Deenen, M. H. L., Abels, H. A., Bonis, N. R., Krijgsman, W., and Kürschner, W. M. 2010. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St. Audrie’s Bay/East Quantoxhead, UK). Earth and Planetary Science Letters 295:262276.CrossRefGoogle Scholar
Sahney, S., and Benton, M. J. 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B 275:759765.CrossRefGoogle ScholarPubMed
Sander, P. M. 2000. Ichthyosauria: their diversity, distribution and phylogeny. Paläontologische Zeitschrift 74(1/2), 135.CrossRefGoogle Scholar
Scheyer, T. M., Romano, C., Jenks, J., and Bucher, H. 2014. Early Triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9(3), e88987. doi: 10.1371/journal.pone.0088987.CrossRefGoogle ScholarPubMed
Schouten, S., van Kaam-Peters, H. M. E., Rijpstra, I. C., Schoell, M., and Damste, J. S. S. 2000. Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon. American Journal of Science 300:122.CrossRefGoogle Scholar
Schwark, L., and Frimmel, A. 2004. Chemostratigraphy of the Posidonia Black Shale, SW-Germany II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions. Chemical Geology 206:231248.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity in marine extinction events. Pp. 336in D. K. Elliott, ed Dynamics of Extinction. Wiley, New York.Google Scholar
Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L. V., and Mailliot, S. 2008. Duration of the early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth and Planetary Science Letters 267:666679.CrossRefGoogle Scholar
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L.V., Philippe, M., Reggiani, L., and Martineau, F. 2010. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth and Planetary Science Letters 290:448458.CrossRefGoogle Scholar
Suan, G., Nikitenkoc, B. L., Rogov, M. A., Baudin, F., Spangenberg, J. E., Knyazev, V. G., Glinskikh, L. A., Goryacheva, A. A., Adatte, T., Riding, J. B., Föllmi, K. B., Pittet, B., Mattioli, E., and Lécuyer, C. 2011. Polar record of Early Jurassic massive carbon injection. Earth and Planetary Science Letters 312:102113.CrossRefGoogle Scholar
Thorne, P. M., Ruta, M., and Benton, M. J. 2011. Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary. Proceedings of the National Academy of Sciences 108:83398344.CrossRefGoogle ScholarPubMed
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.CrossRefGoogle Scholar
Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptiloids: a palaeobiological model. Historical Biology 7:2950.CrossRefGoogle Scholar
Wignall, P. B., Newton, R. J., and Little, C. T. S. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinciton in Europe. American Journal of Science 305:10141032.CrossRefGoogle Scholar
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., and Warren, P. H. 2005. Body size in ecological networks. Trends in Ecology and Evolution 20:402409.CrossRefGoogle ScholarPubMed