Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T00:23:28.871Z Has data issue: false hasContentIssue false

Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through Early Silurian Laurentian crinoids

Published online by Cambridge University Press:  08 February 2016

Bradley Deline
Affiliation:
Department of Geosciences, University of West Georgia, Carrollton, Georgia 30118, United States of America. E-mail: [email protected]
William I. Ausich
Affiliation:
School of Earth Sciences, 125 South Oval, Ohio State, University, Columbus, Ohio 43210, United States of America. E-mail: [email protected]
Carlton E. Brett
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio, 45221, United States of America. E-mail: [email protected]

Abstract

Interpretations of morphologic radiations and macroevolutionary patterns are dependent on a priori choices of taxonomic and geographic scales of study. The results of disparity analysis at varying taxonomic (species and genus) and geographic (regional, biofacies, and community) scales are examined in a study of Ordovician though Early Silurian crinoids. Using discrete morphologic characters, we examined the disparity of 421 crinoids from 65 Laurentian biofacies. Crinoid disparity differs when analyzed at the regional and biofacies levels. Regardless of fluctuations in regional crinoid disparity, average within-biofacies disparity was static throughout the Ordovician, deviating only during the Silurian because of the proliferation of the morphologically aberrant myelodactylid crinoids. The choice of taxonomic level does not have an effect at the biofacies level. However, at the regional level, the two taxonomic scales (genus and species) can produce different results because of variation in the number of species per genus through time and the amount of morphologic variation within individual genera. Weighting disparity by abundance provides a metric combining morphology and community structure. Average weighted disparity at the community level showed patterns similar to that of the biofacies-level disparity curve, but this metric has a greater degree of variation between biofacies. Biofacies with a low ratio of weighted to unweighted disparity display the distinctive community structure (based on aerosol filtration theory) that is often reported in crinoid assemblages.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology 54:273288.Google Scholar
Ausich, W. I. 2001. Echinoderm taphonomy. Pp. 171227inJangoux, M. and Lawrence, J. M., eds. Echinoderm Studies 6. A. A. Balkema, Rotterdam.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Peters, S. E. 2005. A revised macroevolutionary history of Ordovician–Early Silurian crinoids. Paleobiology 31:538551.CrossRefGoogle Scholar
Ausich, W. I., Kammer, T. W., and Baumiller, T. K. 1994. Demise of the middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology 20:345361.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1990. Physical modeling of the batocrinid anal tube; functional analysis and multiple hypothesis testing. Lethaia 23:399408.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.CrossRefGoogle Scholar
Baumiller, T. K., and Gahn, F. J. 2002. Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid-crinoid interaction. InKelley, P. and Kowalewski, M., eds. Fossil record of Predation. Paleontological Society Papers 8:195209.CrossRefGoogle Scholar
Brenchley, P. J. 2003. End Ordovician glaciation. Pp. 8183inWebby, B. D., Droser, M. L., Paris, F., and Percival, I.eds. The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Brett, C. E., Moffat, H. A., and Taylor, W. L. 1997. Echinoderm taphonomy, taphofacies and lagerstätten. InMaples, C. and Waters, J., eds. Geobiology of echinoderms. Paleontological Society Special Paper 3:147190. Paleontology Society, Pittsburgh.CrossRefGoogle Scholar
Briggs, D. E.G., Fortey, R. A., and Wills, M. A. 1992a. Cambrian and Recent morphological disparity. Science 258:18171818.CrossRefGoogle Scholar
Briggs, D. E.G., Fortey, R. A., and Wills, M. A. 1992b. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Brower, J. C., and Veinus, J. 1974. Middle Ordovician crinoids from southwestern Virginia and Eastern Tennessee. Bulletins of American Paleontology 66:1125.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.CrossRefGoogle Scholar
Ciampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from crinoid and blastozoan fossil record. Evolution and Development 4:170188.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N. 2004. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation? Evolution and Development 6:260274.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.2.0.CO;2>CrossRefGoogle Scholar
Claude, J., Paradis, E., Tong, H., and Auffray, J. C. 2003. A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biological Journal of the Linnean Society 79:485501.CrossRefGoogle Scholar
Davis, E. B., and Pyenson, N. D. 2007. Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 250:139149.CrossRefGoogle Scholar
Deline, B. 2009. The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology 35:175189.CrossRefGoogle Scholar
Deline, B., and Ausich, W. I. 2011. Testing the plateau: a reexamination of disparity and morphologic constraints in early Paleozoic crinoids. Paleobiology 37:214236.CrossRefGoogle Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment. Pp. 241269inDonovan, S. K., eds. Advances in the processes of fossilization. Belhaven, London.Google Scholar
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.2.0.CO;2>CrossRefGoogle Scholar
Eckert, J. D. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia 21:147167.CrossRefGoogle Scholar
Eckert, J. D., and Brett, C. E. 1985. Taxonomy and paleoecology of the Silurian myelodactylid crinoid Crinobrachiatus brachiatus (Hall). Royal Ontario Museum Life Sciences Contributions 141:115.Google Scholar
Eckert, J. D., and Brett, C. E. 2001. Early Silurian (Llandovery) crinoids from the Lower Clinton Group, Western New York State. Bulletins of American Paleontology 360:188.Google Scholar
Efron, B. 1982. The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.CrossRefGoogle Scholar
Foote, M. 1993. Discordance and concordance between morphologic and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.CrossRefGoogle Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25 (Suppl. to No. 2).CrossRefGoogle Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion': decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parks, M. A., Rushton, A. W. A., and Woodcock, N. H. 2000. A revised correlation of Ordovician rocks in the British Isles. Geological Society of London Special Report 24.Google Scholar
Gahn, F., and Baumiller, T. K. 2001. Testing evolutionary escalation between camerate crinoids and platyceratid gastropods and phylogenetic analysis of the Compsocrinina (Crinoidea, Monobathrida). Geological Society of America Abstracts with Programs 33:247.Google Scholar
Gahn, F. J., Sprinkle, J., and Guensburg, T. E. 2006. Garden City of echinoderms: a new Early Ordovician Lagerstätte from Idaho and Utah. Geological Society of America Abstracts with Programs 38:383.Google Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159161.CrossRefGoogle ScholarPubMed
Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27:857874.CrossRefGoogle Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Guensburg, T. E. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee. Bulletins of American Paleontology 86:1100.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1997. Distal orogenic effects on peripheral bulge sedimentation: Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research 67:250263.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios 22:392407.CrossRefGoogle Scholar
Holland, S. M., Miller, A. I., Meyer, D. M., and Dattilo, B. F. 2001. The detection and importance of subtle biofacies within a single lithofacies: the Upper Ordovician Kope Formation of the Cincinnati, Ohio Region. Palaios 16:205217.2.0.CO;2>CrossRefGoogle Scholar
Hunter, A. W., and Zonneveld, J. P. 2008. Palaeoecology of Jurassic encrinites: reconstructing crinoid communities from the Western Interior Seaway of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 1–2:5870.CrossRefGoogle Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.CrossRefGoogle ScholarPubMed
Jaanusson, V. 1981. Functional thresholds in evolutionary progress. Lethaia 14:251260CrossRefGoogle Scholar
Jennette, D. C., and Pryor, W. A. 1993. Cyclic alternation of proximal and distal storm facies: Kope and Fairview Formations (Upper Ordovician), Ohio and Kentucky. Journal of Sedimentary Petrology 63:183203.CrossRefGoogle Scholar
Jernvall, J., Hunter, J. P., and Fortelius, M. 1996. Molar tooth diversity, disparity, and Ecology in Cenozoic ungulate radiations. Science 274:14891492.CrossRefGoogle ScholarPubMed
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology 58:115130.Google Scholar
Kammer, T. W., Ausich, W. I., and Parrish, J. M. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology 13:379395.CrossRefGoogle Scholar
Kirkpatrick, M., and Lofsvold, D. 1992. Measuring selection and constraint in the evolution of growth. Evolution 46:954971.CrossRefGoogle ScholarPubMed
LaBarbera, M. 1984. Feeding currents and particle capture mechanisms in suspension feeding animals. American Zoologist 24:7184.CrossRefGoogle Scholar
Lee, M. S. Y. 1992. Cambrian and Recent morphological disparity. Science 258:18161817.CrossRefGoogle ScholarPubMed
Lofgren, A. S., Plotnick, R. E., and Wagner, P. J. 2003. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 29:349368.2.0.CO;2>CrossRefGoogle Scholar
McGowan, A. J. 2004. The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology 30:369395.2.0.CO;2>CrossRefGoogle Scholar
Meyer, D. L., Miller, A. I., Holland, S. M., and Dattilo, B. F. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview Formations, Upper Ordovician, Cincinnati Arch Region. Journal of Paleontology 76:725732.2.0.CO;2>CrossRefGoogle Scholar
Moyne, S., and Neige, P. 2007. The space-time relationship of taxonomic diversity and morphological disparity in the Middle Jurassic ammonite radiation. Palaeogeography, Palaeoclimatology, Palaeoecology 248:8295.CrossRefGoogle Scholar
Neige. 2003. Spatial patterns of disparity and diversity of the Recent cuttlefishes (Cephalopoda) across the Old World. Journal of Biogeography 30:11251137.CrossRefGoogle Scholar
Peters, S. E. 2004. Evenness of Cambrian–Ordovician benthic marine communities in North America. Paleobiology 30:325346.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E., and Ausich, W. I. 2008. A sampling-standardized macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology 34:104116.CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Peterson, K., Dietrich, M., and McPeek, M. 2009. miRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. BioEssays 31:736747.CrossRefGoogle ScholarPubMed
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.2.0.CO;2>CrossRefGoogle Scholar
R Development Core Team. 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.CrossRefGoogle ScholarPubMed
Runnegar, B. 1987. Rates and modes of evolution in the Mollusca. Pp. 3960inCampbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325329.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., 1988. Alpha, beta, and gamma: where does all the diversity go? Paleobiology 14:221234.CrossRefGoogle ScholarPubMed
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology 36:91109.Google Scholar
Sprinkle, J., and Guensburg, T. E. 2004. Crinozoan, blastozoan, asterozoan, echinozoan, and homalozoan echinoderms. Pp. 266280inWebby, B. D., Droser, M. L., and Paris, F., eds. The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10:190194.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 2003. Morphological and developmental macroevolution: a paleontological perspective. International Journal of Developmental Biology 47:517522.Google ScholarPubMed
Villier, L., and Eble, G. J. 2004. Assessing the robustness of disparity estimates: the impacts of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids. Paleobiology 30:652665.2.0.CO;2>CrossRefGoogle Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among Rostroconchia. Paleobiology 23:115150.CrossRefGoogle Scholar
Webster, G. D. 2003. Bibliography and index of Paleozoic crinoids, coronates, and hemistreptocrinoids, 1758–1999. Geological Society of America Special Paper 363.Google Scholar
Webster, M. A. 2007. A Cambrian peak in morphologic variation within trilobite species. Science 317:499502.CrossRefGoogle ScholarPubMed
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.CrossRefGoogle Scholar
Wills, M. A. 1998. Cambrian and Recent disparity: the picture from priapulids. Paleobiology 24:177199.CrossRefGoogle Scholar
Witzke, B. J., and Bunker, B. J. 1996. Relative sea-level changes during Middle Ordovician though Mississippian deposition in the Iowa area, North American craton. InWitzke, B. J., Ludvigsen, G. A., and Day, J. E., eds. Paleozoic sequence stratigraphy: views from the North American Craton. Geological Society of America Special Paper 306:307330.Google Scholar
Zhuravlev, A. Y., and Naimark, E. B. 2005. Alpha, beta, or gamma: numerical view on the Early Cambrian world. Palaeogeography, Palaeoclimatology, Palaeoecology 220:207–225.CrossRefGoogle Scholar