Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T12:43:37.307Z Has data issue: false hasContentIssue false

Biogeographic and ecologic perspective on polycystine radiolarian evolution

Published online by Cambridge University Press:  08 April 2016

Richard E. Casey
Affiliation:
Department of Geology, Rice University, Houston, Texas 77251
Cynthia R. Wigley
Affiliation:
Department of Geology, Rice University, Houston, Texas 77251
Ana Maria Perez-Guzmán
Affiliation:
Instituto de Geologia, U.N.A.M., Codigo Postal 04510, Mexico, D.F., Mexico City

Abstract

Polycystine radiolarians axe the most widely distributed (geographically and geologically) of the well-preserved microzooplankton. To correctly interpret the tempo and mode of radiolarian microevolution, speciation and macroevolution, the zoogeography and ecological niches of extant, and paleozoogeography and paleoecological niches of extinct subspecies, species and higher taxa of the studied lineages should be carefully considered. Such studies of the Stichocorys and Lamprocyrtis lineages suggest that allopatric speciation as peripheral isolates is important. Sympatric speciation is also a possible mode of evolution in these lineages. Hybridization may play a role in the evolution of one subspecies and one species. Allopatrically evolved subspecies and species require some time to inhabit their maximum geographical range after evolving in an isolated and peripheral part of that “environment,” whereas the supposedly sympatrically evolved forms do not. Cooling trends and water mass reorganization may be related to the speciation events. Similar, but much less controlled, studies on a macroevolutionary scale (evolution above the species level, essentially the “family” level) suggest that there have been about half a dozen periods of major adaptive breakthroughs resulting in quantum, or macro, evolution. Global coolings and the initiations of “new” cold-water spheres and related water masses appear to have allowed these macroevolutionary steps during the Ordovician, Devonian-Carboniferous, Permian, and early Neogene. Ecological pressure from diatoms and planktonic foraminiferans appears to have been related to macroevolutionary events bounding the Cretaceous-Tertiary transition.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, O. R. 1983. Radiolaria. 355 pp. Springer-Verlag; New York.Google Scholar
, A. W. H. 1960. Ecology of Recent planktonic foraminifera. 2. Bathymetric and seasonal distributions in the Sargasso Sea off Bermuda. Micropaleontology. 6:373392.Google Scholar
, A. W. H. 1965. The influence of depth on shell growth in Globigerinoides sacculifer (Brady). Micropaleontology. 11:8197.Google Scholar
Baker, C. W. and Johnson, D. A. 1982. Evolution and migration in the radiolarian genus Theocorythium. Proc. 3d No. Am. Paleontol. Conv. 1:2934.Google Scholar
Casey, R. E. 1971a. Distribution of Polycystine radiolarians in the oceans in relation to physical and chemical conditions. Pp. 151159. In: Funnell, B. M. and Riedel, W. R., eds. The Micropalaeontology of Oceans. Cambridge Univ. Press; Cambridge and New York.Google Scholar
Casey, R. E. 1971b. Radiolarians as indicators of past and present water masses. Pp. 331341. In: Funnell, B. M. and Riedel, W. R., eds. The Micropalaeontology of Oceans. Cambridge Univ. Press; Cambridge and New York.Google Scholar
Casey, R. E. 1972. Neogene radiolarian biostratigraphy and paleotemperatures: southern California, the experimental Mohole, Antarctic Core E 14-8. Palaeogeogr., Palaeoclimatol., Palaeoecol. 12:115130.CrossRefGoogle Scholar
Casey, R. E. 1973. Radiolarian evidence for the initiation and development of Neogene glaciations and Neogene water mass regimes. Abstr. Geol. Soc. Am. Ann. Meet. 5(7):570571.Google Scholar
Casey, R. E. 1982. Lamprocyrtis and Stichocorys lineages: biogeographical and ecological perspectives relating to the tempo and mode of polycystine radiolarian evolution. Proc. 3d No. Am. Paleontol. Conv. 1:7782.Google Scholar
Casey, R. E., Drickman, D., Kunze, F., Reynolds, R., Schafersman, S., and Spaw, J. M. 1978. Deep-living polycystine radiolarian ecology, paleoecology, evolution, biostratigraphy, and preservation. Abstr. Geol. Soc. Am. Ann. Meet. 10(7):378.Google Scholar
Casey, R. E., Gust, L., Leavesley, A., Williams, D., Reynolds, R., Duis, T., and Spaw, J. M. 1979a. Ecological niches of radiolarians, planktonic foraminiferans and pteropods inferred from studies on living forms in the Gulf of Mexico and adjacent waters. Trans. Gulf Coast Assoc. Geol. Soc. 29:216223.Google Scholar
Casey, R. E., McMillen, K., Reynolds, R., Spaw, J. M., Schwarzer, R., Gevirtz, J., and Bauer, J. 1979b. Relict and expatriated radiolarian fauna in the Gulf of Mexico and its implications. Trans. Gulf Coast Assoc. Geol. Soc. 29:224227.Google Scholar
Casey, R. E., Price, A. B., and Swift, C. A. 1972. Radiolarian definition and paleoecology of the late Miocene to early Pliocene in southern California. In: Stinemeyer, E. H. and Church, C. C., eds. The Pacific Coast Miocene Biostratigraphic Symposium. Pacific Sec. Soc. Econ. Paleontol. Mineral.; Bakersfield, Calif.Google Scholar
Casey, R. E. and Reynolds, R. A. 1980. Late Neogene radiolarian biostratigraphy related to magnetostratigraphy and paleoceanography with suggested cosmopolitan radiolarian datums. Pp. 287300. In: Sliter, W. V., ed. Studies in Marine Micropaleontology and Paleoecology, a Memorial Volume to Orville L. Bandy. Cushman Found. Foraminiferal Res., Sp. Pub. 19. Allen Press; Lawrence, Kans.Google Scholar
Casey, R. E. and Sloan, J. R. 1971. Possible causes of diversities and extinctions of radiolarians and other microplankton. Abstr. Geol. Soc. Am. Ann. Meet. 3(7):763765.Google Scholar
Casey, R. E., Spaw, J. M., and Kunze, F. R. 1982. Polycystine radiolarian distributions and enhancements related to oceanographic conditions in a hypothetical ocean. Trans. Gulf Coast Assoc. Geol. Soc. 32:319332.Google Scholar
Casey, R. E., Spaw, J. M., Kunze, F., Reynolds, R., Duis, T., McMillen, K., Pratt, D., and Anderson, V. 1979c. Radiolarian ecology and the development of the radiolarian component in Holocene sediments, Gulf of Mexico and adjacent seas with potential paleontological applications. Trans. Gulf Coast Assoc. Geol. Soc. 29:228237.Google Scholar
Dumitrica, P. 1973. Paleocene Radiolaria, DSDP Leg 21. In: Burns, R. E., Andrews, J. E., et al., eds. Initial Reports of the Deep Sea Drilling Project. 21:787817.Google Scholar
Fortey, R. A. and Holdsworth, B. K. 1971. The oldest known well-preserved Radiolaria. Boll. Soc. Paleontol. Ital. 10:3541.Google Scholar
Gould, S. M. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.Google Scholar
Harper, H. E. and Knoll, A. H. 1975. Silica, diatoms, and Cenozoic radiolarian evolution. Geology. 3:175177.Google Scholar
Hays, J. D. 1970. The stratigraphy and evolutionary trends of radiolaria in North Pacific deep-sea sediments. Pp. 186218. In: Hays, J. D., ed. Geologic Investigations of the North Pacific. Geol. Soc. Am. Mem. 126.CrossRefGoogle Scholar
Holdsworth, B. K. 1977. Paleozoic Radiolaria: stratigraphic distribution in the Atlantic borderlands. Pp. 167184. In: Swain, F. M., ed. Stratigraphic Micropaleontology of Atlantic Basin and Borderlands. Elsevier; Amsterdam, Oxford, New York.CrossRefGoogle Scholar
Kling, S. A. 1973. Radiolaria from the eastern North Pacific, Deep Sea Drilling Project, Leg 18. In: Kulm, L. D., von Huene, R., et al., eds. Initial Reports of the Deep Sea Drilling Project. 18:617671.Google Scholar
Kling, S. A. 1978. Radiolaria. Pp. 203244. In: Haq, B. U. and Boersma, A., eds. Introduction to Marine Micropaleontology. Elsevier; Amsterdam, Oxford, New York.Google Scholar
Lazarus, D. B., Hays, J. D., and Prothero, D. R. 1982. Evolution in the radiolarian species-complex Pterocanium. Proc. 3d No. Am. Paleontol. Conv. 2:323328.Google Scholar
Lipps, J. H. 1970. Plankton evolution. Evolution. 24:122.Google Scholar
Moore, T. C. 1969. Radiolaria: change in skeletal weight and resistance solution. Geol. Soc. Am. 80:21032108.Google Scholar
Reynolds, R. A. 1978. Cosmopolitan biozonation for late Cenozoic radiolarians from Deep Sea Drilling Project Core 77B of Leg 9. Trans. Gulf Coast Assoc. Geol. Soc. 28:421431.Google Scholar
Reynolds, R. A. 1980. Radiolarians from the western North Pacific. Leg 57, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 56-57 (Pt. 2):735769.Google Scholar
Riedel, W. R. 1953. Mesozoic and late Tertiary Radiolaria of Rotti. J. Paleontol. 27:805813.Google Scholar
Riedel, W. R. and Sanfilippo, A. 1970. Radiolaria, Leg 4, Deep Sea Drilling Project. In: Bader, R. G., et al., eds. Initial Reports of the Deep Sea Drilling Project. 4:503575.Google Scholar
Riedel, W. R. and Sanfilippo, A. 1977. Cainozoic Radiolaria. Pp. 857912. In: Ramsay, A. T. S., ed. Oceanic Micropaleontology. Academic Press; London, New York, San Francisco.Google Scholar
Sakai, T. 1980. Radiolarians from sites 434, 435, and 436, northeast Pacific, Leg 56, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 56-57 (Pt. 2):695733.Google Scholar
Schopf, T. M. 1980. Paleoceanography. 341 pp. Harvard Univ. Press; Cambridge, Mass.CrossRefGoogle Scholar
Spaw, J. M. 1979. Vertical distribution, ecology and preservation of recent polycystine radiolaria of the north Atlantic Ocean (southern Sargasso Sea region). 185 pp. , Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1942. The oceans: their physics, chemistry, and general biology. 1,087 pp. Prentice-Hall; Englewood Cliffs, N.J.Google Scholar
Tappan, H. and Loeblich, A. R. 1973. Evolution of the oceanic plankton. Earth-Sci. Rev. 9:207240.CrossRefGoogle Scholar
Theyer, F. 1972. Late Neogene paleomagnetic and planktonic zonation, southeast Indian Ocean-Tasman Basin. 198 pp. , .Google Scholar
Theyer, F., Mato, C. Y., and Hammond, S. R. 1978. Paleomagnetic and geochronologic calibration of latest Oligocene to Pliocene radiolarian events, equatorial Pacific. Mar. Micropaleontol. 3:377395.CrossRefGoogle Scholar
Weaver, R. M., Casey, R. E., and Perez, A. M. 1981. Stratigraphic and paleoceanographic significance of early Pliocene to middle Miocene radiolarian assemblages from northern to Baja California. Pp. 7186. In: Garrison, R. E. and Douglas, R. G., eds. The Monterey Formation and Related Siliceous Rocks of California. Pacific Sect. Soc. Econ. Paleontol. Mineral. Los Angeles, Calif.Google Scholar