Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:16:35.420Z Has data issue: false hasContentIssue false

Self-organization of foraging behaviour: From simplicity to complexity without goals

Published online by Cambridge University Press:  14 December 2007

Frederick D Provenza
Affiliation:
Department of Rangeland Resources, Utah State Univ., Logan, Utah, U.S.A. 84322–5230
Juan J Villalba
Affiliation:
Department of Rangeland Resources, Utah State Univ., Logan, Utah, U.S.A. 84322–5230
Carl D Cheney
Affiliation:
Department of Psychology, Utah State Univ., Logan, Utah, U.S.A. 84322–2810
Scott J Werner
Affiliation:
Department of Rangeland Resources, Utah State Univ., Logan, Utah, U.S.A. 84322–5230
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A herbivore faces challenges while foraging—ongoing changes in its physiological condition along with variation in the nutrient and toxin concentrations of foods, spatially and temporally—that make selecting a nutritious diet a vital affair. Foraging behaviours arise from simple rules that operate across levels of resolution from cells and organs to individuals and their interactions with social and physical environments. At all these levels, behaviour is a function of its consequences: a behaviour operating on the environment to induce changes is itself changed by those events. Thus, behaviour emerges from its own functioning—behaviour self-organizes-not from that of its surroundings. This ostensible autonomy notwith-standing, no self-organizing system (cell, organ, or individual) is independent of its environs because existence consists of an ongoing exchange of energy and matter. According to this view, the notion of cause and effect is replaced with functional relationships between behaviours and environmental consequences. Changes in physical environments alter the distribution, abundance, nutritional, and toxicological characteristics of plants, which affect food preference. Social interactions early in life influence behaviour in various ways: animals prefer familiar foods and environments, and they prefer to be with companions. Animals in unfamiliar environments often walk farther, ingest less food, and suffer more from malnutrition and toxicity than animals in familiar environments. An individual's food preferences—and its ability to discriminate familiar from novel foods—arise from the functional integration of sensory (smell, taste, texture) and postingestive (effects of nutrients and toxins on chemo-, osmo-, and mechano-receptors) effects. The ability to discriminate among foods is critical for survival: all problems with poisonous plants are due to an inability to discriminate or a lack of alternatives. Animals eat a variety of foods as a result of nearing or exceeding tolerance limits for sensory and postingestive effects unique to each food. After eating any food too frequently or excessively, the likelihood increases that animals will eat alternative foods owing to exceeding sensory-, nutrient-, and toxin-specific tolerance limits. Cyclic patterns of intake of a variety of foods reflect seemingly chaotic interactions among flavours, nutrients, and toxins interacting along continua.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Andelt, W. F., Baker, D. L. & Burnham, K. P. (1992). Relative preference of captive cow elk for repellent-treated diets. Journal of Wildlife Management 56, 164173.CrossRefGoogle Scholar
Andersen, R. (1991). Habitat deterioration and the migratory behaviour of moose (Alces alces L.) in Norway. Journal of Applied Ecology 28, 102108.CrossRefGoogle Scholar
Aoki, C. & Siekevitz, P. (1988). Plasticity in brain development. Scientific American 256(12). 5664.CrossRefGoogle Scholar
Barber, W. D. & Burks, T. F. (1987). Brain-gut interactions: brain stem neuronal response to local gastric effects of substance P. American Journal of Physiology 253, G369G377.Google ScholarPubMed
Bazely, D. R. (1989). Carnivorous herbivores: mineral nutrition and the balanced diet. Trends in Ecology and Evolution 4, 155156.CrossRefGoogle Scholar
Berteaux, D., Crete, M., Huot, J., Maltais, J. & Ouellet, J.-P. (1998). Food choice by white-tailed deer in relation to protein and energy content of the diet: a field experiment. Oecologia 115, 8492.CrossRefGoogle Scholar
Biquand, S. & Biquand-Guyot, V. (1992). The influence of peers, lineage and environment on food selection of the criollo goat (Capra hircus). Applied Animal Behaviour Science 34, 231245.CrossRefGoogle Scholar
Birch, L. L. & Deysher, M. (1986). Caloric compensation and sensory specific satiety: evidence for self regulation of food intake by young children. Appetite 7, 323331.Google ScholarPubMed
Black, J. L. & Kenney, P. A. (1984). Factors affecting diet selection by sheep. II. Height and density of pasture. Australian Journal of Agricultural Research 35, 565578.CrossRefGoogle Scholar
Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S. & Camazine, S. (1997). Self-organization in social insects. TREE 12, 188193.Google ScholarPubMed
Bond, N. & Di Guisto, E. (1975). Amount of solution drunk is a factor in the establishment of taste aversion. Animal Learning and Behavior 3, 8184.CrossRefGoogle Scholar
Booth, D. A. & Toase, A. M. (1983). Conditioning of hunger/satiety signals as well as flavour cues in dieters. Appetite 4, 235236.Google Scholar
Brothers, L. (1997). Friday's Footprint. New York: Oxford University Press.Google Scholar
Bryant, J. P., Chapin, F. S. & Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357368.CrossRefGoogle Scholar
Bryant, J. P., Provenza, F. D., Pastor, J., Reichardt, P. B., Clausen, T. P. & Du Toit, J. T. (1991). Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annual Review of Ecology and Systematics 22, 431446.CrossRefGoogle Scholar
Bryant, J. P., Reichardt, P. B., Clausen, T. P., Provenza, F. D. & Kuropat, P. J. (1992). Woody plant-mammal interactions. In Herbivores: their interactions with secondary plant metabolites. 2. Ecological and evolutionary processes, 2nd edn, pp. 343370 [Rosenthal, G. A. and Berenbaum, M. R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Burritt, E. A. & Provenza, F. D. (1989). Food aversion learning: ability of lambs to distinguish safe from harmful foods. Journal of Animal Science 67, 17321739.CrossRefGoogle ScholarPubMed
Burritt, E. A. & Provenza, F. D. (1991). Ability of lambs to learn with a delay between food ingestion and consequences given meals containing novel and familiar foods. Applied Animal Behaviour Science 32, 179189.CrossRefGoogle Scholar
Burritt, E. A. & Provenza, F. D. (1992). Lambs form preferences for nonnutritive flavors paired with glucose. Journal of Animal Science 70, 11331136.CrossRefGoogle ScholarPubMed
Burritt, E. A. & Provenza, F. D. (1996). Amount of experience and prior illness affect the acquisition and persistence of conditioned food aversions in lambs. Applied Animal Behaviour Science 48, 7380.CrossRefGoogle Scholar
Burritt, E. A. & Provenza, F. D. (1997). Effect of an unfamiliar location on the consumption of novel and familiar foods by sheep. Applied Animal Behaviour Science 54, 317325.CrossRefGoogle Scholar
Cabanac, M. (1971). Physiological role of pleasure. Science 173, 11031107.CrossRefGoogle ScholarPubMed
Capra, F. (1991). The Tao of Physics. Boston, MA: Shambhala.Google Scholar
Capra, F. (1996). The Web of Life. New York: Doubleday.Google Scholar
Caraco, T., Blanckenhorn, W. U., Gregory, G. M., Newman, J. A., Recer, G. M. & Zwicker, S. M. (1990). Risk-sensitivity: ambient temperature affects foraging choice. Animal Behaviour 39, 338345.CrossRefGoogle Scholar
Chase, L. E., Wangsness, P. J., Kavanaugh, J. F., Griel, L. C. & Gahagan, J. H. (1977). Changes in portal blood metabolites and insulin with feeding steers twice daily. Journal of Dairy Science 60, 403409.CrossRefGoogle ScholarPubMed
Cheeke, P. R. (1998). Natural Toxicants in Feeds, Forages, and Poisonous Plants. Danville IL: Interstate.Google Scholar
Cheney, C. D. (1994). The source and control of behavior. In Human Behavior in Today's World, pp. 7386 [Waris Ishaq, , editor]. New York: Praeger.Google Scholar
Chiesa, M. (1994). Radical Behaviorism: the philosophy and the science. Boston, MA: Authors Cooperative Inc.Google Scholar
Coates, K. P., Schemnitz, S. D. & Peters, J. T. (1991). Use of rodent middens as mineral licks by bighorn sheep. In Seventh Biennial Symposium, Northern Wild Sheep and Goat Council, pp. 206209 [Bailey, J. A., editor]. Alberta: Northern Wild Sheep and Goat Council, Alberta Fish and Wildlife.Google Scholar
Cole, B. J. (1994). Chaos and behavior: the perspective of nonlinear dynamics. In Behavioral Mechanisms in Evolutionary Ecology, pp. 423443 [Real, L. A., editor]. Chicago, IL: University of Chicago Press.Google Scholar
Coley, P. D., Bryant, J. P. & Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science 230, 895899.CrossRefGoogle ScholarPubMed
Cooper, S. D. B., Kyriazakis, I., Anderson, D. H. & Oldham, J. D. (1993). The effect of physiological state (late pregnancy) on the diet selection of ewes. Animal Production 56, 469 (abstr.).Google Scholar
Coppersmith, R. & Leon, M. (1984). Enhanced neural response to familiar olfactory cues. Science 225, 849851.CrossRefGoogle Scholar
Cottrell, D. F. & Iggo, A. (1984). Mucosal enteroceptors with vagal afferent fibers in the proximal duodenum of sheep. Journal of Physiology 354, 497522.CrossRefGoogle ScholarPubMed
Damasio, A.R. (1994). Descartes' Error: emotion, reason, and the human brain. New York: Avon Books.Google Scholar
Day, J. E. L., Kyriazakis, I & Rogers, P. J. (1998). Food choice and intake: towards a unifying framework of learning and feeding motivation. Nutrition Research Reviews 11, 2543.CrossRefGoogle ScholarPubMed
De Jong, A. (1981). The effect of feed intake on nutrient and hormone levels in jugular and portal blood in goats. Journal of Agricultural Science 96, 643657.CrossRefGoogle Scholar
Demment, M. W., Distel, R. A., Griggs, T. C., Laca, E. A. & Deo, G. P. (1993). Selective behaviour of cattle grazing ryegrass swards with horizontal heterogeneity in patch height and bulk density. In Proceedings, International Grassland Congress XVII, 712714.Google Scholar
Dennett, D. (1995). Darwin's Dangerous Idea. New York: Norton.Google Scholar
Distel, R. A. & Provenza, F. D. (1991). Experience early in life affects voluntary intake of blackbrush by goats. Journal of Chemical Ecology 17, 431450.CrossRefGoogle ScholarPubMed
Dohi, H. & Yamada, A. (1997). Preference of sheep and goats for extracts from high-grain concentrate. Journal of Animal Science 75, 20732077.CrossRefGoogle ScholarPubMed
Drewnowski, A., Grinker, J. A. & Hirsch, J. (1982). Obesity and flavor perception: multidimensional scaling of soft drinks. Appetite 3, 361368.CrossRefGoogle ScholarPubMed
Dudzinski, M. L., Müller, W. J., Low, W. A. & Schuh, H.-J. (1982). Relationship between dispersion behaviour of free-ranging cattle and forage conditions. Applied Animal Ethology 8, 225241.CrossRefGoogle Scholar
Dudzinski, M. L., Schuh, H.-J., Wilcox, D. G., Gardiner, H. G. & Morrissey, J. G. (1978). Statistical and probabilistic estimators of forage conditions from grazing behaviour of merino sheep in a semi-arid environment. Applied Animal Ethology 4, 357368.CrossRefGoogle Scholar
du Toit, J. T., Provenza, F. D & Nastis, A. S. (1991). Conditioned taste aversions: how sick must a ruminant get before it learns about toxicity in foods? Applied Animal Behaviour Science 30, 3546.CrossRefGoogle Scholar
Early, D. M. & Provenza, F. D. (1998). Food flavor and nutritional characteristics alter dynamics of food preference in lambs. Journal of Animal Science 76, 728734.CrossRefGoogle ScholarPubMed
Egan, A. R. (1980). Host animal-rumen relationships. Proceedings of the Nutrition Society 39, 7987.CrossRefGoogle ScholarPubMed
English-Loeb, G., Stout, M. J. & Duffey, S. S. (1997). Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79, 456468.CrossRefGoogle Scholar
Evans, E. J., Buchanan-Smith, J. G. & Macleod, G. K. (1975). Postprandial patterns of plasma glucose, insulin and volatile fatty acids in ruminants fed low- and high-roughage diets. Journal of Animal Science 41, 14741479.CrossRefGoogle ScholarPubMed
Fisher, D. S., Burns, J. C. & Mayland, H. F. (1997 a). Variation in preference for morning or afternoon harvested hay in sheep, goats, and cattle. Journal of Animal Science 75 (Suppl.), 201.Google Scholar
Fisher, D. S., Mayland, H. F. & Burns, J. C. (1997 b). Diurnal timing of hay harvest and ruminant preferences for hays. Agronomy Abstracts p. 142.Google Scholar
Flores, E. R., Provenza, F. D. & Balph, D. F. (1989). Role of experience in the development of foraging skills of lambs browsing the shrub serviceberry. Applied Animal Behaviour Science 23, 271278.CrossRefGoogle Scholar
Freeland, W. J. & Janzen, D. H. (1974). Strategies in herbivory by mammals: the role of plant secondary compounds. American Naturalist 108, 269289.CrossRefGoogle Scholar
Freeman, W. J. (1991). The physiology of perception. Scientific American 264(2), 7885.CrossRefGoogle ScholarPubMed
Friedman, M. I. (1997). An energy sensor for control of energy intake. Proceedings of the Nutrition Society 56, 4150.CrossRefGoogle ScholarPubMed
Furness, R. W. (1988). Predation on ground-nesting seabirds by island populations of red deer Cervus elaphus and sheep Ovis. Journal of Zoology 216, 565573.CrossRefGoogle Scholar
Garcia, J. (1989). Food for Tolman: cognition and cathexis in concert. In Aversion, Avoidance and Anxiety, pp. 4585 [Archer, T. and Nilsson, L., editors]. Hillsdale, NJ: Erlbaum.Google Scholar
Garcia, J., Lasiter, P. A., Bermudez-Rattoni, F. & Deems, D. A. (1985). A general theory of aversion learning. In Experimental Assessments and Clinical Applications of Conditioned Food Aversions, pp. 821 [Braveman, N.S. and Bronstein, P., editors]. New York: New York Academy of Sciences.Google Scholar
Gibson, E. L. & Booth, D. A. (1986). Acquired protein appetite in rats: dependence on a protein-specific need state. Experientia 42, 10031004.CrossRefGoogle ScholarPubMed
Gibson, E. L. & Booth, D. A. (1989). Dependence of carbohydrate-conditioned flavor preference on internal state in rats. Learning and Motivation 20, 3647.CrossRefGoogle Scholar
Glass, L., Beuter, A. & Larocque, D. (1988). Time delays, oscillations, and chaos in physiological control systems. Mathematical Biosciences 90, 111125.CrossRefGoogle Scholar
Glass, L. & Mackey, M. C. (1988). From Clocks to Chaos: the rhythms of life. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Glass, L. & Malta, C. P. (1990). Chaos in multi-looped negative feedback systems. Journal of Theoretical Biology 145, 217223.CrossRefGoogle ScholarPubMed
Gluesing, E. A. & Balph, D. F. (1980). An aspect of feeding behavior and its importance to grazing systems. Journal of Range Management 33, 426427.CrossRefGoogle Scholar
Gordon, I. J., Illius, A. W. & Milne, J. D. (1996). Sources of variation in the foraging efficiency of grazing ruminants. Functional Ecology 10, 219226.CrossRefGoogle Scholar
Goss, S., Beckers, R., Deneubourg, J. L., Aron, S. & Pasteels, J. M. (1990). How trail laying and trail following can solve foraging problems for ant colonies. In Behavioural Mechanism of Food Selection (NATO ASI Series G: Ecological Sciences, vol. 20). pp. 661677 [Hughes, R.N., editor.] Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Gould, S. J. (1989). Wonderful Life: the Burgess Shale and the nature of history. New York: Norton.Google Scholar
Green, G. C., Elwin, R. L., Mottershead, B. E. & Lynch, J. J. (1984). Long-term effects of early experience to supplementary feeding in sheep. Proceedings of the Australian Society of Animal Production 15, 373375.Google Scholar
Green, H. H. (1925). Perverted appetites. Physiological Reviews 5, 336348.CrossRefGoogle Scholar
Griffith, B., Scott, J. M., Carpenter, J. W. & Reed, C. (1989). Translocation as a species conservation tool: status and strategy. Science 245, 477480.CrossRefGoogle ScholarPubMed
Hobbs, N. T. (1996). Modification of ecosystems by ungulates. Journal of Wildlife Management 60, 695713.CrossRefGoogle Scholar
Hollick, M. (1993). Self-organizing systems and environmental management. Environmental Management 17, 621628.CrossRefGoogle Scholar
Howery, L. D., Provenza, F. D., Banner, R. E. & Scott, C. B. (1996). Differences in home range and habitat use among individuals in a cattle herd. Applied Animal Behaviour Science 49, 305320.CrossRefGoogle Scholar
Howery, L. D., Provenza, F. D., Banner, R. E. & Scott, C. B. (1998). Social and environmental factors influence cattle distribution on rangeland. Applied Animal Behaviour Science 55, 231244.CrossRefGoogle Scholar
Hunter, R. F. & Milner, C. (1963). The behaviour of individual, related and groups of south country Cheviot hill sheep. Animal Behaviour 11, 507513.CrossRefGoogle Scholar
Illius, A. W. & Hodgson, J. (1996). Progress in understanding the ecology and management of grazing systems. In The Ecology and Management of Grazing Systems, pp. 429457 [Hodgson, J. & Illius, A.W., editors]. Wallingford: CAB International.Google Scholar
Johnson, H. B. & Mayeux, H. S. (1992). Viewpoint: A view on species additions and deletions and the balance of nature. Journal of Range Management 45, 322333.CrossRefGoogle Scholar
Kalat, J. W. (1974). Taste salience depends on novelty, not concentration, in taste-aversion learning in the rat. Journal of Comparative and Physiological Psychology 86, 4750.CrossRefGoogle Scholar
Kalat, J. W. & Rozin, P. (1970). ‘Salience’: A factor which can override temporal contiguity in taste-aversion learning. Journal of Comparative and Physiological Psychology 71, 192197.CrossRefGoogle Scholar
Kalil, R. E. (1989). Synapse formation in the developing brain. Scientific American 256 (12), 5664.Google Scholar
Kamil, A. C., Misthal, R. L. & Stephens, D. W. (1993). Failure of simple optimal foraging models to predict residence time when patch quality is uncertain. Behavioral Ecology 4, 350363.CrossRefGoogle Scholar
Kaplan, M. L. & Kaplan, N. R. (1991). The self-organization of human psychological functioning. Behavioral Science 36, 161178.CrossRefGoogle ScholarPubMed
Kauffman, S. (1995). At Home in the Universe: the search for laws of self-organization and complexity. London: Penguin Books.Google Scholar
Kaufmann, W. J. (1994). Universe, 4th edn. New York: W. H. Freeman and Company.Google Scholar
Keeler, R. F., Baker, D. C. & Evans, J. O. (1988). Individual animal susceptibility and its relationship to induced adaption or tolerance in sheep to Galega officinalis. Letters in Veterinary and Human Toxicology 30, 420423.Google ScholarPubMed
Keeler, R. F., Baker, D. C. & Panter, K. E. (1992). Concentration of galegine in Verbesina encelioides and Galega officinalis and the toxic and pathologic effects induced by the plants. Journal of Environmental Pathology, Toxicology and Oncology 11, 7581.Google ScholarPubMed
Kelsall, J. P. (1968). The Migratory Barren-Ground Caribou of Canada. Ottawa: Canadian Wildlife Service.Google Scholar
Kelso, J. A. (1995). Dynamic Patterns: the self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
Kennedy, M. & Gray, R. D. (1993). Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the Ideal Free Distribution. Oikos 68, 158166.CrossRefGoogle Scholar
Key, C. & Maclver, R. M. (1980). The effects of maternal influences on sheep: breed differences in grazing, resting and courtship behaviour. Applied Animal Ethology 6, 3348.CrossRefGoogle Scholar
Kimball, B. A. (1997). Chemical Ecology of Vascular Tissue Foraging by Black Bears. PhD thesis, Colorado State University.Google Scholar
Konarzewski, M. & Diamond, J. (1994). Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiological Zoology 67, 11861212.CrossRefGoogle Scholar
Kyriazakis, I. & Oldham, J. D. (1993). Diet selection in sheep: the ability of growing lambs to select a diet that meets their crude protein (nitrogen × 6.25) requirements. British Journal of Nutrition 69, 617629.CrossRefGoogle ScholarPubMed
Kyriazakis, I. & Oldham, J. D. (1997). Food intake and diet selection in sheep: the effect of manipulating the rates of digestion of carbohydrates and protein of the foods offered as a choice. British Journal of Nutrition 77, 243254.CrossRefGoogle ScholarPubMed
Kyriazakis, I., Oldham, J. D., Coop, R. L. & Jackson, F. (1994). The effect of subclinical intestinal nematode infection on the diet selection of growing sheep. British Journal of Nutrition 72, 665677.CrossRefGoogle ScholarPubMed
Langvatn, R. & Hanley, T. A. (1993). Feeding-patch choice by red deer in relation to foraging efficiency-an experiment. Oecologia 95, 164170.CrossRefGoogle Scholar
Launchbaugh, K. L. & Provenza, F. D. (1993). Can plants practice mimicry to avoid grazing by mammalian herbivores? Oikos 66, 501504.CrossRefGoogle Scholar
Launchbaugh, K. L., Provenza, F. D. & Burritt, E. A. (1993). How herbivores track variable environments: Response to variability of phytotoxins. Journal of Chemical Ecology 19, 10471056.CrossRefGoogle ScholarPubMed
Launchbaugh, K. L., Provenza, F. D. & Werkmeister, M. J. (1997). Overcoming food neophobia in domestic ruminants through addition of a familiar flavor and repeated exposure to novel foods. Applied Animal Behaviour Science 54, 327334.CrossRefGoogle Scholar
Lawler, I. R., Stapley, J., Foley, W. J. & Eschler, B. M. (1998). An ecological example of conditioned flavor aversion in plant-herbivore interactions: the effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums. Journal of Chemical Ecology in press.Google Scholar
Leek, B. F. (1977). Abdominal and pelvic visceral receptors. British Medical Bulletin 33, 163168.CrossRefGoogle ScholarPubMed
McArthur, C., Hagerman, A. E. & Robbins, C. T. (1991). Physiological strategies of mammalian herbivores against plant defenses. In Plant Defenses Against Mammalian Herbivory, pp. 103114 [Palo, R.T. and Robins, C.T., editors]. Boca Raton, FL: CRC Press.Google Scholar
Mach, E. (1960). The Science of Mechanics: a critical and historical account of its development. (Original English translation published 1893). LaSalle: Open Court Publishing.Google Scholar
Maclean, N. (1976). A River Runs through It, and other stories. Chicago, IL: University of Chicago Press.Google Scholar
McNulty, S. A., Porter, W. F., Mathews, N. E. & Hill, J. A. (1997). Localized management for reducing white-tailed deer populations. Wildlife Society Bulletin 25, 265271.Google Scholar
Maturana, H. R. & Varela, F. J. (1980). Autopoiesis and Cognition: the realization of the living. Dordrecht: Reidel.CrossRefGoogle Scholar
May, R. M. (1986). When two and two do not make four: nonlinear phenomena in ecology. Proceedings of the Royal Society of London B 228, 241266.Google Scholar
Mehansho, H., Hagerman, A., Clements, S., Butler, L., Rogler, J. & Carlson, D. M. (1983). Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Proceedings of the National Academy of Sciences of the USA 80, 39483952.CrossRefGoogle ScholarPubMed
Mei, N. (1985). Intestinal chemosensitivity. Physiological Reviews 65, 211237.CrossRefGoogle ScholarPubMed
Millonas, M. M. (1992). A connectionist type model of self-organized foraging and emergent behaviour in ant swarms. Journal of Theoretical Biology 159, 529552.CrossRefGoogle Scholar
Mirza, S. N. & Provenza, F. D. (1990). Preference of the mother affects selection and avoidance of foods by lambs differing in age. Applied Animal Behaviour Science 28, 255263.CrossRefGoogle Scholar
Mirza, S. N. & Provenza, F. D. (1992). Effects of age and conditions of exposure on maternally mediated food selection by lambs. Applied Animal Behaviour Science 33, 3542.CrossRefGoogle Scholar
Morris, R. (1993). Cosmic Questions. New York: Wiley.Google Scholar
Naim, M., Brand, J. G. & Kare, M. R. (1986). Role of variety of food flavor in fat deposition produced by ‘cafeteria’ feeding of nutritionally controlled diets. In Interaction of the Chemical Senses with Nutrition, pp. 269292 [Kare, M.R. and Brand, J.G., editors]. New York: Academic Press.CrossRefGoogle Scholar
Nolte, D. L. & Provenza, F. D. (1991). Food preferences in lambs after exposure to flavours in milk. Applied Animal Behaviour Science 32, 381389.CrossRefGoogle Scholar
Nolte, D. L., & Provenza, F. D., Callan, R. & Panter, K. E. (1992). Garlic in the ovine fetal environment. Physiology & Behavior 52, 10911093.CrossRefGoogle ScholarPubMed
O'Reagain, P. J., Goetsch, B. C. & Owen-Smith, R. N. (1996). Effect of species composition and sward structure on the ingestive behaviour of cattle and sheep grazing South African sourveld. Journal of Agricultural Science 127, 271280.CrossRefGoogle Scholar
Ortega-Reyes, L. & Provenza, F. D. (1993). Amount of experience and age affect the development of foraging skills of goats browsing blackbrush (Coleogyne ramosissima). Applied Animal Behaviour Science 36, 169183.CrossRefGoogle Scholar
Ortega-Reyes, L., Provenza, F. D., Parker, C. F. & Hatfield, P. G. (1992). Drylot performance and ruminal papillae development of lambs exposed to a high concentrate diet while nursing. Small Ruminant Research 7, 101112.CrossRefGoogle Scholar
Owen-Smith, R. N. (1993). Evaluating optimal diet models for an African browsing ruminant, the kudu: how constraining are the assumed constraints? Evolutionary Ecology 7, 499524.CrossRefGoogle Scholar
Perez, C., Ackroff, K. & Sclafani, A. (1996). Carbohydrate- and protein-conditioned flavor preferences: effects of nutrient preloads. Physiology and Behavior 59; 467474.CrossRefGoogle ScholarPubMed
Pfister, J. A., Provenza, F. D., Manners, G. D., Gardner, D. R. & Ralphs, M. H. (1997). Tall larkspur ingestion: Can cattle regulate intake below toxic levels? Journal of Chemical Ecology 23, 759777.CrossRefGoogle Scholar
Phillips, R. J. & Powley, T. L. (1996). Gastric volume rather than nutrient content inhibits food intake. American Journal of Physiology 271, R766R779.Google ScholarPubMed
Piersma, T. & Lindstrom, A. (1997). Rapid reversible changes in organ size as a component of adaptive behaviour. TREE 12, 134138.Google ScholarPubMed
Prigogine, I. (1980). From Being to Becoming: time and complexity in the physical sciences. San Francisco, CA: Freeman.Google Scholar
Prigogine, I. & Stengers, I. (1984). Order Out of Chaos: man's new dialogue with nature. New York: Bantam Books.Google Scholar
Provenza, F. D. (1977). Biological Manipulation of Blackbrush (Coleogyne ramosissima Torr.) by Browsing with Goats. MS thesis, Utah State University.Google Scholar
Provenza, F. D. (1995). Postingestive feedback as an elementary determinant of food preference and intake in ruminants. Journal of Range Management 48, 217.CrossRefGoogle Scholar
Provenza, F. D. (1996). Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. Journal of Animal Science 74, 20102020.CrossRefGoogle ScholarPubMed
Provenza, F. D. (1997). Feeding behavior of animals in response to plant toxicants. In CRC Handbook of Plant and Fungal Toxicants, pp. 231242 [D'Mello, J.P.F., editor]. Boca Raton, FL: CRC Press Inc.Google Scholar
Provenza, F. D. & Balph, D. F. (1988). Development of dietary choice in livestock on rangelands and its implications for management. Journal of Animal Science 66, 23562368.CrossRefGoogle Scholar
Provenza, F. D. & Balph, D. F. (1990). Applicability of five diet-selection models to various foraging challenges ruminants encounter. In Behavioural Mechanisms of Food Selection (NATO ASI Series G: Ecological Sciences, vol. 20) pp. 423459 [Hughes, R.N., editor]. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Provenza, F. D. & Burritt, E. A. (1991). Socially-induced diet preference ameliorates conditioned food aversion in lambs. Applied Animal Behaviour Science 31, 229236.CrossRefGoogle Scholar
Provenza, F. D., Burritt, E. A., Clausen, T. P., Bryant, J. P., Reichardt, P. B. & Distel, R. A. (1990). Conditioned flavor aversion: a mechanism for goats to avoid condensed tannins in blackbrush. American Naturalist 136, 810828.CrossRefGoogle Scholar
Provenza, F. D. & Cincotta, R. P. (1993). Foraging as a self-organizational learning process: accepting adaptability at the expense of predictability. In Diet Selection: an interdisciplinary approach to foraging behaviour. pp. 78101 [Hughes, R.N., editor]. London: Blackwell Scientific Publications.Google Scholar
Provenza, F. D., Lynch, J. J., Burritt, E. A. & Scott, C. B. (1994 a). How goats learn to distinguish between novel foods that differ in postingestive consequences. Journal of Chemical Ecology 20, 609624.CrossRefGoogle ScholarPubMed
Provenza, F. D., Lynch, J. J. & Cheney, C. D. (1995). Effects of a flavor and food restriction on the response to novel foods by sheep. Applied Animal Behaviour Science 43, 8393.CrossRefGoogle Scholar
Provenza, F. D., Lynch, J. J. & Nolan, J. V. (1993 a). The relative importance of mother and toxicosis in the selection of foods by lambs. Journal Chemical Ecology 19, 313323.CrossRefGoogle ScholarPubMed
Provenza, F. D., Lynch, J. J., & Nolan, J. V. (1994 b). Food aversion conditioned in anesthetized sheep. Physiology & Behavior 55, 429432.CrossRefGoogle ScholarPubMed
Provenza, F. D., Nolan, J. V & Lynch, J. J. (1993 b). Temporal contiguity between food ingestion and toxicosis affects the acquisition of food aversions in sheep. Applied Animal Behaviour Science 38, 269281.CrossRefGoogle Scholar
Provenza, F. D., Pfister, J. A. & Cheney, C. D. (1992). Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores. Journal of Range Management 45, 3645.CrossRefGoogle Scholar
Provenza, F. D., Scott, C. B., Phy, T. S. & Lynch, J. J. (1996). Preference of sheep for foods varying in flavors and nutrients. Journal of Animal Science 74, 23552361.CrossRefGoogle ScholarPubMed
Provenza, F. D., Villalba, J. J. & Augner, M. (1998). The physics of foraging. Proceedings, International Grassland Congress XVIII, in press.Google Scholar
Ralphs, M. R. (1997). Persistence of aversions to larkspur in naive and native cattle. Journal of Range Management 50, 367370.CrossRefGoogle Scholar
Ramirez, I. (1997). Intragastric carbohydrate exerts both intake-stimulating and intake-suppressing effects. Behavioral Neuroscience 111. 612622.CrossRefGoogle ScholarPubMed
Revusky, S. H. & Bedarf, E. W. (1967). Association of illness and prior ingestion of novel foods. Science 155, 219220.CrossRefGoogle ScholarPubMed
Ricardo, J. A. & Koh, E. T. (1978). Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Research 153, 126.CrossRefGoogle Scholar
Rolls, B. J. (1986 a). Sensory-specific satiety. Nutrition Reviews 44, 93101.CrossRefGoogle ScholarPubMed
Rolls, B. J., Van Duijvenvoorde, P. M. & Rolls, E. T. (1984). Pleasantness changes and food intake in a varied four-course meal. Appetite 5, 337348.CrossRefGoogle Scholar
Rolls, E. T. (1986 b). Neuronal activity related to the control of feeding. In Feeding Behavior, Neural and Humoral Controls, pp. 163190 [Ritter, R. C., Ritter, S. and Barnes, C. D., editors]. New York: Academic Press.CrossRefGoogle Scholar
Ryle, G. (1949). The Concept of Mind. Chicago, IL: University of Chicago Press.Google Scholar
Sclafani, A. (1996). How food preferences are learned: laboratory animal models. Proceedings of the Nutrition Society 54, 419427.CrossRefGoogle Scholar
Scott, C. B., Banner, R. E. & Provenza, F. D. (1996). Observations of sheep foraging in familiar and unfamiliar environments: familiarity with the environment influences diet selection. Applied Animal Behaviour Science 49, 165171.CrossRefGoogle Scholar
Scott, C. B., Provenza, F. D. & Banner, R. E. (1995). Dietary habits and social interactions affect choice of feeding location by sheep. Applied Animal Behaviour Science 45, 225237.CrossRefGoogle Scholar
Scott, L. L. & Provenza, F. D. (1998). Variation among sheep in food selection: effects of basal ration and foods offered in a meal. Journal of Animal Science in press.Google Scholar
Scott, T. R. (1990). Gustatory control of food selection. In Handbook of Behavioral Neurobiology, vol. 10. pp. 243263 [Stricker, E.M., editor]. New York: Plenum Press.Google Scholar
Seynaeve, C., De Mulder, P. H. M. & Verweij, J. (1991). Pathophysiology of cytotoxic drug-induced emesis: far from crystal-clear. Pharmaceutisch Weekblad, Scientific Edition 13, 16.CrossRefGoogle ScholarPubMed
Shatz, C. J. (1992). The developing brain. Scientific American 267 (3), 6167.CrossRefGoogle ScholarPubMed
Simpson, S. J. & Raubenheimer, D. (1993). A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philosophical Transactions of the Royal Society of London B Biological Sciences 342, 381402.Google Scholar
Skinner, B. F. (1938). The Behavior of Organisms: an experimental analysis. New York: Appleton-Century-Crofts.Google Scholar
Skinner, B. F. (1981). Selection by consequences. Science 213, 501504.CrossRefGoogle ScholarPubMed
Skinner, B. F. (1984).The evolution of behavior. Journal of the Experimental Analysis of Behavior 41, 217221.CrossRefGoogle ScholarPubMed
Solé, R.V., Miramontes, O. & Goodwin, B. C. (1993). Oscillations and chaos in ant societies. Journal of Theoretical Biology 161, 343357.CrossRefGoogle Scholar
Squibb, R. C., Provenza, F. D. & Balph, D. F. (1990). Effect of age of exposure on consumption of a shrub by sheep. Journal of Animal Science 68, 987997.CrossRefGoogle ScholarPubMed
Stebbins, G.L. (1981). Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden 68, 7586.CrossRefGoogle Scholar
Stickland, T. R., Britton, N. F. & Franks, N. R. (1995). Complex trails and simple algorithms in ant foraging. Proceedings of the Royal Society of London B 260, 5358.Google Scholar
Sutcliffe, A. J. (1977). Further notes on bones and antlers chewed by deer and other ungulates. Journal of the British Deer Society 4, 7382.Google Scholar
Swithers, S. E. & Hall, W. G. (1994). Does oral experience terminate ingestion? Appetite 23, 113138.CrossRefGoogle ScholarPubMed
Swithers-Mulvey, S. E., Miller, G. L. & Hall, W. G. (1991). Habituation of oromotor responding to oral infusions in rat pups. Appetite 17, 5567.CrossRefGoogle ScholarPubMed
Tausch, R. J., Wigand, P. E. & Burkhardt, J. W. (1993). Viewpoint. Plant community thresholds, multiple steady states, and multiple successional pathways: legacy of the Quaternary? Journal of Range Management 46, 439447.CrossRefGoogle Scholar
Thorhallsdottir, A. G., Provenza, F. D. & Balph, D. F. (1990). Social influences on conditioned food aversions in sheep. Applied Animal Behaviour Science 25, 4550.CrossRefGoogle Scholar
Tien, D. V., Lynch, J. J., Hinch, G. N. & Nolan, J. V. (1998). Grass odor and flavour overcome feed neophobia in sheep. Small Ruminunt Research in press.Google Scholar
Toates, F. M. (1997). Has pure ethology the right foundations for applied ethology? Applied Animal Behaviour Science 53, 113.CrossRefGoogle Scholar
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd edn. Ithaca, NY: Cornell University Press.CrossRefGoogle Scholar
van Wieren, S.E. (1996). Do large herbivores select a diet that maximizes short-term energy intake? Forest Ecology and Management 88, 149156.CrossRefGoogle Scholar
Villalba, J. J. & Provenza, F. D. (1996). Preference for flavored wheat straw by lambs conditioned with intraruminal administrations of sodium propionate. Journal of Animal Science 74, 23622368.CrossRefGoogle ScholarPubMed
Villalba, J. J. & Provenza, F. D. (1997 a). Preference for wheat straw by lambs conditioned with intraruminal infusions of starch. British Journal of Nutrition 77, 287297.CrossRefGoogle ScholarPubMed
Villalba, J. J. & Provenza, F. D. (1997 b). Preference for flavoured foods by lambs conditioned with intraruminal administration of nitrogen. Brirish Journal of Nutrition 78, 545561.CrossRefGoogle ScholarPubMed
Villalba, J. J. & Provenza, F. D. (1997 c). Preference for flavoured wheat straw by lambs conditioned with intraruminal infusions of acetate and propionate. Journal of Animal Science 75, 29052914.CrossRefGoogle ScholarPubMed
Villalba, J. J. & Provenza, F. D. (1998 a). Nutrient-specific preferences by lambs conditioned with intraruminal infusions of starch, casein, and water. Journal of Animal Science in press.Google Scholar
Villalba, J. J. & Provenza, F. D. (1998 b). Discriminating among foods: effects of energy provision on preferences of lambs for poor-quality foods. Applied Animal Behaviour Science in press.Google Scholar
Villalba, J. J. & Provenza, F. D. (1998 c). Effects of food structure and nutritional quality and animal nutritional state on intake behaviour and food preferences of sheep. Applied Animal Behaviour Science in press.Google Scholar
Wallis de Vries, M. F. (1994). Foraging in a Landscape Mosaic: Diet Selecfion and Performance of Free-Ranging Cattle in Heathland and Riverine Grassland. PhD thesis, Wageningen.Google Scholar
Wang, J. & Provenza, F. D. (1996 a). Food preference and acceptance of novel foods by lambs depend on the composition of the basal diet. Journal of Animal Science 74. 23492354.CrossRefGoogle ScholarPubMed
Wang, J. & Provenza, F. D. (1996 b). Food deprivation affects preference of sheep for foods varying in nutrients and a toxin. Journal of Chemical Ecology 22, 20112021.CrossRefGoogle ScholarPubMed
Wang, J. & Provenza, F. D. (1997). Dynamics of preference by sheep offered foods varying in flavors, nutrients, and a toxin. Journal of Chemical Ecology 23, 275288.CrossRefGoogle Scholar
Warren, J. T. & Mysterud, I. (1993). Extensive ranging by sheep released onto an unfamiliar range. Applied Animal Behaviour Science 38, 6773.CrossRefGoogle Scholar
Westoby, M. (1978). What are the biological bases of varied diets? American Naturalist 112, 627631.CrossRefGoogle Scholar
Wilmshurst, J. F., Fryxell, J. M. & Hudson, R. J. (1995). Forage quality and patch choice by wapiti (Cervus elaphus). Behavioral Ecology 6, 209217.CrossRefGoogle Scholar
Wilson, E. O. (1998). Consilience: the unity of knowledge. New York: Alfred A. Knopf Inc.Google Scholar
Wooley, O. W., Wooley, S. C. & Dunham, R. B. (1972). Calories and sweet taste: effects on sucrose preference in the obese and nonobese. Physiology and Behavior 9, 765768.CrossRefGoogle ScholarPubMed
Wu, J. & Loucks, O. L. (1995). From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Quarterly Review of Biology 70, 439466.CrossRefGoogle Scholar
Yuan, C.-S. & Barber, W. D. (1992). Hypothalamic unitary responses to gastric vagal input from the proximal stomach. American Journal of Physiology 262, G74G80.Google ScholarPubMed