Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T19:19:51.732Z Has data issue: false hasContentIssue false

Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification

Published online by Cambridge University Press:  01 August 2000

HERIBERT SCHMITZ
Affiliation:
Botanisches Institut, Universität Köln, Gyrhofstrasse 15, 50923 Köln, Germany
UTE HILGERS
Affiliation:
Botanisches Institut, Universität Köln, Gyrhofstrasse 15, 50923 Köln, Germany
MANFRED WEIDNER
Affiliation:
Botanisches Institut, Universität Köln, Gyrhofstrasse 15, 50923 Köln, Germany
Get access

Abstract

Uptake, translocation and metabolism of 14C-labelled formaldehyde in the leaves of Epipremnum aureum (Golden Potho) and Ficus benjamina (Weeping Fig) were investigated. Plants were exposed in light and dark to 14C-formaldehyde (500 μg m−3) in gas exposure chambers. The amount of 14C-incorporation into the soluble (water-extractable) and insoluble fractions of leaves, stem sections and roots was determined. The soluble 14C-activity was fractionated by ion exchange chromatography followed by thin-layer chromatography/autoradiography. Approximately 60–70% of the applied 14C-formaldehyde was recovered from the plants. In the light about five times more 14C-formaldehyde was assimilated than in the dark. The amount of 14C-label derived from 14C-formaldehyde, which was incorporated into acid-stable metabolites, was enhanced to an even larger extent in the light. The 14C-activity pattern closely resembled the general labelling spectrum of photosynthates, obtained after a 14CO2 exposure. A substantial amount of labelled material, mostly sucrose, was translocated into the stems and roots. Our results suggest that in the light 14C enters the Calvin cycle after an enzymatic two-step oxidation process of 14C-formaldehyde to 14CO2. The activities of the respective enzymes, formaldehyde dehydrogenase and formate dehydrogenase, were determined. Among 27 ‘leafy’ indoor decorative plants, a screening experiment revealed no outstanding species with regard to its capacity for metabolism of formaldehyde, and rate of uptake through stomata was too low to justify claims that plants contribute usefully to indoor air purification.

Type
Research article
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)