Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T07:31:10.660Z Has data issue: false hasContentIssue false

Unravelling the enigmas of the ‘silver sands’ in the Dutch/German/Belgian border area

Published online by Cambridge University Press:  24 March 2014

A.J. van Loon*
Affiliation:
Geological Institute, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznan, Poland. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bright white sands consisting almost exclusively of quartz (sometimes called ‘silver sands’) occur throughout the world; those in Europe commonly date from the late Paleogene and early Neogene. They have a clearly sedimentary origin, and they may have originated in various types of environments, but precise data are lacking because sedimentary research into these deposits (that have a high economic value) has been scarce. It is most likely that diagenetic processes are largely responsible for their exceptional appearance, but it is highly unlikely that all silver sands were subject to the same diagenetic conditions.

The precise origin of most of the silver sands is still enigmatic. In the case of the silver sands in the Dutch/German/Belgian border area, it appears that long-lasting in situ leaching by humic acids (resulting in an extremely low percentage of heavy minerals), in combination with differential cementation (and later partial dissolution of the cement), must be held responsible for the wide variety of the characteristics of these sands, including locally sharp boundaries with the underlying sands, lack of precipitates at the contact plane with the underlying sands, and the joint occurrence of strongly weathered and fresh specimens of the same heavy-mineral species.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2009

References

Bateman, R.M. & Catt, J.A., 2007. Provenance and palaeoenvironmental interpretation of superficial deposits, with particular reference to post-depositional modification of heavy mineral assemblages. In: Mange, M.A. & Wright, D.T. (eds): Heavy minerals in use. Developments in Sedimentology 58, Elsevier (Amsterdam): 151188.CrossRefGoogle Scholar
Buffel, Ph., Claes, S. & Gullentops, F., 2001. Geologische kaart van België — Vlaams Gewest, kaartblad 26 Rekem & verklarende tekst. Ministerie van Economische Zaken, Bestuur Kwaliteit en Veiligheid, Belgische Geologische Dienst / Ministerie van de Vlaamse Gemeenschap, Afdeling Natuurlijke Rijkdommen en Energie (Brussel): 56 pp.Google Scholar
De Jong, J.D. & Van der Waals, L., 1971. Depositional environment and weathering phenomena of the white Miocene sands of Southern Limburg (the Netherlands). Geologie en Mijnbouw 50: 417424.Google Scholar
De Mulder, E.F.J. & Ritsema, I., 2003. Duurzaam gebruik en beheer van de ondergrond. In: De Mulder, F.J., Geluk, M.C., Ritsema, I., Westerhoff, W.E. & Wong, Th.E. (eds): De ondergrond van Nederland. Geologie van Nederland 7. Nederlands Instituut voor Toegepaste Geowetenschappen TNO (Utrecht): 9118.Google Scholar
Dubelaar, C.W. & Menkovic, A., 1998. Inventarisatie zilverzanden Zuid-Limburg, update 1998. TNO Report NITG-98-135-C.Google Scholar
Gulinck, M., 1961. Note sur le Boldérien d'Opgrimbie (Campine) et remarques sur les grès ‘erratiques’ du Limbourg. Bulletin de la Société Belge de Géologie 70:297301.Google Scholar
Gullentops, F., 1963. Etude de divers facies quaternaires et tertiaires dans le Nord et l'Est de la Belgique. Excursion O-P 6e Congrès International de Sédimentologie, Belgique et Pays-Bas 10: 20 pp.Google Scholar
Gullentops, F., 1972, 1973. Grainsize and mineralogy of Miocene glass-sands ofMaasmechelen, Belgian Limburg. Mededelingen Rijks Geologische Dienst, Nieuwe Serie 23: 2534.Google Scholar
Hilden, H.D. (ed.), 1988. Geologie am Niederrhein (4th ed.). Geologisches Landesamt Nordrhein-Westfalen (Krefeld): 142 pp.Google Scholar
Kuyl, O.S., 1973. Pure Miocene quartz sands in southern Limburg, the Netherlands — stratigraphical occurrence and regional distribution. Verhandelingen Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap 29: 7380.Google Scholar
Laban, C., 2007. Wandelen over zilverzand. Grondboor & Hamer 6: 135138.Google Scholar
Manten, A.A., 1958. Palynology of the Miocene browncoal mines at Haanrade (Limburg, Netherlands). Acta Botanica Neerlandica 7: 45488.Google Scholar
Maimone, M., Ike, P. & Bennema, S.J., 1985. Toekomstige beschikbaarheid oppervlakte delfstoffen. Internal report Department of Civil Technics, Delft University of Technology.Google Scholar
Morton, A.C. & Hallsworth, C., 2007. Stability of detrital heavy minerals during burial diagenesis. In: Mange, M.A. and Wright, D.T. (eds): Heavy minerals in use. Developments in Sedimentology 58, Elsevier (Amsterdam): 215245.Google Scholar
Muller, J.E., 1943. Uitkomsten van nieuwe geologisch paleontologische onder -zoekingen in den ondergrond van Nederland. Sedimentpetrologie van het dekgebergte in Limburg. Mededelingen Geologische Stichting, Serie C II 2 2: 78 pp.Google Scholar
O'Driscoll, M., 2004. The economic importance of industrial minerals. Proceedings IMA Europe's 10th Anniversary Conference ‘Industrial Minerals Growing with Europe’ (Brussels, 13 May 2004). European Parliament, Brussels: 1327.Google Scholar
Reihe, H., 1999. Wirtschaftsgeologie. Berichte zur Rohstoffwirtschaft 6, Bewertungs kriterien für Industrieminerale, Steine und Erden, 3 Quartzrohstoffe.Google Scholar
Utescher, T., Mosbrugger, V. & Ashraf, A.R., 2002. Facies and palaeogeography of the Tertiary of the lower Rhine basin - Sedimentary versus tectonic control. Netherlands Journal of Geosciences 81: 185191.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P. (eds), 1997. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst, Section 1, Tertiair: 39 pp.Google Scholar
Van der Meulen, M.J., Westerhoff, W.E., Menkovic, A., Gruijters, S.H.L.L., Dubelaar, C.W. & Maljers, D., 2009. Silica sand resources in the Netherlands. Netherlands Journal of Geosciences 882: 147160.Google Scholar
Van der Waals, L., Van den Broek, J.M.M., Bakker, J.P. & Kummer, E.A., 1962. The Beaujean sand pit on the Heerenweg at Heerlen, South Limburg. Mededelingen Rijks Geologische Dienst, Nieuwe Serie 15: 4548.Google Scholar
Van Loon, A.J., 1972/1973. ‘Habitus’ of some heavy minerals from the Tertiary of Southern Limburg (the Netherlands). Mededelingen Rijks Geologische Dienst, Nieuwe Serie 23: 3965.Google Scholar
Van Loon, A.J. & Mange, M.A., 2007. In situ’ dissolution of heavy minerals through extreme weathering, and the application of the surviving assemblages and their dissolution characteristics to correlation of Dutch and German silver sands. In: Mange, M.A. & Wright, D.T. (eds): Heavy minerals in use. Developments in Sedimentology 58. Elsevier, Amsterdam, 189213.Google Scholar
Velbel, M.A., 2007. Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: examples from pyroxenes and amphiboles. In: Mange, M.A. & Wright, D.T. (eds): Heavy minerals in use. Developments in Sedimentology 58. Elsevier, Amsterdam, 113150.Google Scholar
Westerhoff, W.E., Wong, Th.E., & De Mulder, E.F.J., 2003. Opbouw van de ondergrond. In: De Mulder, F.J., Geluk, M.C., Ritsema, I., Westerhoff, W.E. and Wong, Th.E. (eds): De ondergrond van Nederland. Geologie van Nederland 7. Nederlands Instituut voor Toegepaste Geowetenschappen TNO (Utrecht): 247352.Google Scholar
Wouters, L. & Vandenberghe, N., 1994. Geologie van de Kempen — een synthese. NIRAS, NIROND-94-11.Google Scholar