Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T17:17:12.380Z Has data issue: false hasContentIssue false

The role of permafrost in shaping the Late Glacial relief of northern Poland

Published online by Cambridge University Press:  24 March 2014

A.J. van Loon*
Affiliation:
Geological Institute, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań, Poland
M. Błaszkiewicz
Affiliation:
Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organization, Kopernika 19, 87-100 Toruń, Poland
M. Degórski
Affiliation:
Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Twarda 51/55, 00818-Warszawa, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of permafrost in Poland north of the line indicating the maximum ice extent of the Vistulian (Weichselian) glaciation after retreat of the land-ice cap has been a subject of debate for a long time. Investigations in an area at the line of the maximum ice extent of the Pomeranian phase prove that permafrost existed, indeed, after the ice retreat. This conclusion is drawn on the basis of morphological data (the presence of oriented kettle holes), sedimentological data (the nature of the infilling of the kettle holes) and pedological data (permafrost-affected horizons in soil profiles). It appears that the permafrost mostly developed in the ice-free zone that appeared after the retreat of the land-ice cap, but it is likely that some relict permafrost that had originated earlier in front of advancing ice was also still present. The landscape of northern Poland owes its relief partly to the Late Glacial permafrost.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Błaszkiewicz, M., 1998. Dolina Wierzycy, jej geneza oraz rozwój w późnym plejstocenie i wczesnym holocenie. (The Wierzyca Valley, its genesis and development in late Pleistocene and early Holocene). Dokumentacja Geograficzna 10.Google Scholar
Błaszkiewicz, M., 2005. Późnoglacjalna i wczesnoholoceńska ewolucja obniżeń jeziornych na Pojezierzu Kociewskim (wschodnia część Pomorza). (Late Glacial and early Holocene evolution of the lake basins in the Kociewskie Lakeland – eastern part of the Pomeranian Lakeland). Prace Geograficzne 201: 1192.Google Scholar
Błaszkiewicz, M., 2011. Timing of the final disappearance of permafrost in the central European Lowland, as reconstructed from the evolution of lakes in N Poland. Geological Quarterly 55: 361374.Google Scholar
Blume, H., Beyer, L. & Schneider, D., 1998. Soils of the southern circumpolar region and their classification. Eurasian Soil Science 31: 477485.Google Scholar
Böse, M., 1995. Problems of dead ice and ground ice in the central part of the North European Plain. Quaternary International 28: 123125.CrossRefGoogle Scholar
Boulton, G.S., 1967. The development of a complex supraglacial moraine at the margin of Sørbreen, Ny Friesland, Vestspitsbergen glaciers. Journal of Glaciology 6: 717736.CrossRefGoogle Scholar
Brodzikowski, K. & Van Loon, A.J., 1991. Glacigenic sediments. Developments in Sedimentology 49, Elsevier (Amsterdam), 674 pp.Google Scholar
Bukowska-Jania, E., 2003. Rola systemu lodowcowego w obiegu węglanu wapnia w środowisku przyrodniczym (na przykładzie Svalbardu i mtodoglacjalnych obszarów Polski północno-zachodniej (The role of glacier systems in the migration of calcium carbonate in the natural environment with particular reference to Svalbard and the last-glacial areas in NW Poland). Silesian University Press, Katowice, 247 pp.Google Scholar
Catt, J., 1988. Quaternary geology for scientists and engineers. John Wiley and Sons, New York, 335 pp.Google Scholar
Cegła, J. & Kozarski, S., 1977. Sedimentary and geomorphological consequences of the occurrence of naled sheets on the outwash plain of the Gaas Glacier, Soerkappland, Spitsbergen. In: Results of investigations of the Polish scientific Spitsbergen expeditions 1970-1974, 2. Acta Universitatis Wratislaviensis 387: 6384.Google Scholar
Clayton, L., Attig, J.W. & Mickelson, D.M., 2001. Effects of Late Pleistocene permafrost on the landscape of Wisconsin USA. Boreas 30: 173188.CrossRefGoogle Scholar
Degórski, M., 2007. Spatial variability in podzolic soils of central and northern Europe. U.S. Environmental Protection Agency Report, 178 pp.Google Scholar
Ewertowski, M., 2009. Ice-wedge pseudomorphs and frost-cracking structures in Weichselian sediments, central-west Poland. Permafrost and Periglacial Processes 20: 316330.CrossRefGoogle Scholar
Florin, M. & Wright, H.E. Jr, 1969. Diatom evidence for the persistence of stagnant glacial ice in Minnesota. Geological Society of America Bulletin 80: 694704.CrossRefGoogle Scholar
French, H.M. & Harfy, D.G., 1990. Observations on buried glacier ice and massive segregated ice, western Arctic coast, Canada. Permafrost and Periglacial Processes 1: 3143.CrossRefGoogle Scholar
Gedl, P., 2011. Palynology of Late Pleistocene varved clays from ice-dammed lakes at Lebork and Zlocieniec (north-western Poland). Geologos 17: 4959.CrossRefGoogle Scholar
Hambrey, M.J., 1984. Sudden draining of ice-dammed lakes in Spitsbergen. Polar Record 22: 189194.CrossRefGoogle Scholar
Klatkowa, H., 1994. Evaluation du rôle de l'agent periglaciaire en Pologne centrale. Biuletyn Peryglacjalny 33: 79100.Google Scholar
Kopp, D., 1965. Die periglaziäre Deckzone (Geschiebedecksand) im nordostdeutschen Tiefland und ihre bodenkundliche Bedeutung. Berichte der Geologischen Gesellschaft in der DDR 10: 739771.Google Scholar
Kopp, D., 1969. Die Waldstandorte des Tieflandes – Ergebnisse der forstlichen Standortserkundung in der Deutschen Demokratischen Republik. VEB Forstprojektierung, Potsdam: 9141.Google Scholar
Kopp, D., 1970. Kryogene Perstruktion und ihre Beziehung zur Bodenbildung im MoränengebietIn: Richter, H., Haase, G., Lieberoth, G. & Ruske, R. (eds): Periglazial. Löss – Paläolithikum im Jungpleistozän der DDR. Petermanns Geografische Mittteilungen und Ergebnisse 274: 269279.Google Scholar
Kowalkowski, A., 1984. Surface texture of quartz grains from tundra soils under electron microscope. Quaternary Studies in Poland 5: 7580.Google Scholar
Kowalkowski, A., 1990. Evolution in Holocene soils in Poland. Quaestiones Geographicae, Special Issue 4: 93120.Google Scholar
Kowalkowski, A., 1995. Catena of podzolic soils on the northern slope of Västerskutan in the massif of the Åreskutan, Jämland. Quaestiones Geographicae, Special Issue 4: 185193.Google Scholar
Kozarski, S., 1975. Oriented kettle holes in outwash plains. Quaestiones Geographicae 2: 99112.Google Scholar
Kozarski, S., 1993. Late Plenivistulian deglaciation and the expansion of the periglacial zone in NW Poland. Geologie en Mijnbouw 72: 143157.Google Scholar
Krüger, J. & Kjaer, K.H., 2000. De-icing progression of ice-cored moraines in a humid, subpolar climate, Kötlujökull, Iceland. The Holocene 10: 737747.CrossRefGoogle Scholar
Lacelle, D., Bjornson, J., Lauriol, B., Clark, I.D. & Troutet, Y., 2004. Segregated-intrusive ice of subglacial meltwater origin in retrogressive thaw-flow headwalls, Richardson Mountains, NWT, Canada. Quaternary Science Reviews 23: 681696.CrossRefGoogle Scholar
Last, W.M. & Vance, R.E., 2002. The Holocene history of Oro Lake, one of western Canada's longest continuous lacustrine records. Sedimentary Geology 148: 161184.CrossRefGoogle Scholar
Liedtke, H., 1993. Phasen periglaziär-geomorphologischer Prägung während der Weichseleiszeit im norddeutschen Tiefland. Zeitschrift für Geomorphologie 93: 6994.Google Scholar
Litt, Th., Brauer, A., Goslar, T., Merkt, J., Balaga, K., Müller, H., Ralska-Jasiewiczowa, M., Stebrich, M. & Negendank, J.F.W., 2001. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20: 12331249.CrossRefGoogle Scholar
Marks, L., 2002. Last Glacial Maximum in Poland. Quaternary Science Reviews 21: 103110.CrossRefGoogle Scholar
Marks, L., Ber, A., Gogołek, W. & Piotrowska, K. (eds), 2006. Geological map of Poland 1:500 000 with explanatory text. Państwowy Instytut Geologiczny, Warszawa.Google Scholar
Morawski, W., 2009a. Neotectonics induced by ice-sheet advances in NE Poland. Geologos 15: 199217.CrossRefGoogle Scholar
Morawski, W., 2009b. Differences in the regional stratigraphy of NE Poland caused by vertical movements due to glacioisostasy. Geologos 15: 235250.CrossRefGoogle Scholar
Niewiarowski, W., 2003. Pleni- and late Vistulian glacial lakes, their sediments and landforms: a case study from the young glacial landscape of northern Poland. In: Kotarba, A. (ed.): Holocene and late Vistulian paleogeography and paleohydrology. Prace Geograficzne 189: 6185.Google Scholar
Nitz, B., 1984. Grundzüge der Beckenentwicklung im mitteleuropäischen Tiefland – Modell einer Sediment- und Reliefgenese. Petermanns Geographische Mitteilungen 128: 133141.Google Scholar
Piotrowski, J.A., Hermanowski, P. & Piechota, A.M., 2009. Meltwater discharge through the subglacial bed and its land-forming consequences from numerical experiments in the Polish lowland during the last glaciation. Earth Surface Processes and Landforms 34: 481492.CrossRefGoogle Scholar
Pisarska-Jamroży, M. & Börner, A., 2011. Is the Charlottenthal fan (marginal zone of the Pomeranian phase, NE Germany) an end moraine? Geologos 17: 1728.CrossRefGoogle Scholar
Rachlewicz, G., 1991. Morfogeneza stożka sandrowego w strefie marginalnej fazy pomorskiej koło Kołtek w świetle badań osadów powierzchniowych (Morphogenesis of a sandur cone in the marginal zone of the Pommeranian phase near Koltki based on analysis of the surficial deposits). Badania Fizjograficzne Polski Zachodniej 42, Seria A Geografia Fizyczna, Poznań: 205228.Google Scholar
Schomacker, A., 2008. What controls dead-ice melting under different climate conditions? A discussion. Earth-Science Reviews 90: 103113.CrossRefGoogle Scholar
Schwalb, A. & Dean, W.E., 2002. Reconstruction of hydrological changes and response to effective moisture variations from North-Central USA lake sediments. Quaternary Science Reviews 21: 15411554.CrossRefGoogle Scholar
Szewczyk, J. & Nawrocki, J., 2011. Deep-seated relict permafrost in northeastern Poland. Boreas 40: 385388.CrossRefGoogle Scholar
Vandenberghe, J., 2001. Permafrost during the Pleistocene in northwest and central Europe. In: Paepe, R. & Melnikov, V. (eds): Permafrost response on economic development, environmental security and natural resources. Kluwer Academic Publishers, Dordrecht: 185194.CrossRefGoogle Scholar
Vandenberghe, J., 2002. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International 91: 1723.CrossRefGoogle Scholar
Vandenberghe, J., 2006. Cryoturbation structures. In: Elias, S.A. (ed.): Encyclopedia of Quaternary Science. Elsevier, Amsterdam: 21472153.Google Scholar
Vandenberghe, J. & Czudek, T., 2008 Pleistocene cryopediments on variable terrain. Permafrost and Periglacial Processes 19: 7183.CrossRefGoogle Scholar
Vandenberghe, J. & Kasse, C., 1993a. Periodic ice-wedge formation and Weichselian cold-climate floodplain sedimentation in the Netherlands. Proceedings 6th International Conference on Permafrost (Beijing) 1: 643647.Google Scholar
Vandenberghe, J. & Kasse, C., 1993b. Cryopedimentation on soft-sediment subsoils. Würzburger Geographische Arbeiten 87: 283297.Google Scholar
Vandenberghe, J. & Thorn, C.E., 2002 Progress in periglacial research. Progress in Physical Geography 26: 475477.CrossRefGoogle Scholar
Vandenberghe, J., Cui, Z.J., Zhao, L. & Zhang, W., 2004. Thermal contraction crack networks as evidence for Late-Pleistocene permafrost in Inner Mongolia. Permafrost and Periglacial Processes 15: 2129.CrossRefGoogle Scholar
Van Huissteden, J., Vandenberghe, J., Van der Hammen, T. & Laan, W., 2000. Fluvial and aeolian interaction under permafrost conditions: Weichselian Late Pleniglacial, Twente, eastern Netherlands. Catena 40: 307321.CrossRefGoogle Scholar
Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15: 355.Google Scholar
Więckowski, K., 1966. Osady denne Jeziora Mikołajskiego (Bottom deposits of Lake Mikołajki). Prace Geograficzne 57, 112 pp.Google Scholar