Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T20:49:03.396Z Has data issue: false hasContentIssue false

Modelling of speleothems failure in the Hotton cave (Belgium). Is the failure earthquake induced?

Published online by Cambridge University Press:  01 April 2016

J.F. Cadorin
Affiliation:
University of Liège, Chemin des chevreuils., 1-B-4000 Liège 1, Belgium; e-mail: [email protected], [email protected]
D. Jongmans
Affiliation:
Laboratory of Geophysical Prospecting, Liège University, Bat. B 19, B-4000 Liège; e-mail:[email protected]
A. Plumier
Affiliation:
University of Liège, Chemin des chevreuils., 1-B-4000 Liège 1, Belgium; e-mail: [email protected], [email protected]
T. Camelbeeck
Affiliation:
Royal Observatory of Belgium, avenue circulaire 3, B-l 180 Bruxelles; e-mail:[email protected]
S. Delaby
Affiliation:
Centre d’Etudes et de Recherches Appliquées au Karst (CERAK), Faculté Polytechnique de Mons, Rue de Houdain, 9, B-7000 Mons; e-mail:[email protected], [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To provide quantitative information on the ground acceleration necessary to break speleothems, laboratory measurements on samples of stalagmite have been performed to study their failure in bending. Due to their high natural frequencies, speleothems can be considered as rigid bodies to seismic strong ground motion. Using this simple hypothesis and the determined mechanical properties (a minimum value of 0.4 MPa for the tensile failure stress has been considered), modelling indicates that horizontal acceleration ranging from 0.3 m/s2 to 100 m/s2 (0.03 to 10g) are necessary to break 35 broken speleothems of the Hotton cave for which the geometrical parameters have been determined. Thus, at the present time, a strong discrepancy exists between the peak accelerations observed during earthquakes and most of the calculated values necessary to break speleothems. One of the future research efforts will be to understand the reasons of the defined behaviour. It appears fundamental to perform measurements on in situ speleothems.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Bini, A., Quinif, Y., Sules, O., Uggeri, A., 1992. Evidences de tectonique récente dans les grottes du M. Campo de Fiori (Lombardie, Italie). Karstologia 19 : 2330.Google Scholar
Delaby, S., 1999. Etude statistique de l’enregistrement paléosismique par les spéléothèmes. L’exemple de la Grotte de Hotton (Belgique). ‘Karst 99’. Etudes de géographie physique travaux 1999 – Suppl. n EXXVIII, CAGEP, Université de Provence : 7376.Google Scholar
Delaby, S., 2001. Paleoseismic investigations in Belgium caves. In press: Cahier du Centre Européen de Géodynamique et de Sismologie, Vol 18:4548.Google Scholar
Forti, P., Postpischl, D., 1979, ab. Derivazione di dati neotettonici da analisi di concrezioni alabastrine, IE contributo. Analisi statistica delle stalagmiti del sistema carsico Fiume-Vento (S. Vittore Genga – Ancona). CNR – Progetto Finalizzato Geodinamica 251.Google Scholar
Forti, P., Postpischl, D., 1980. Neotectonic data from stalagmites : sampling and analysis techniques. European Regional Conference on Speleology Sofia, CNR – Progetto Finalizzato Geodinamica, 351 Sofía, 2, 3439.Google Scholar
Forti, P., Postpischl, D., 1984. Seismotectonic and paleoseismic analysis using karst sediments. Marine Geology 55, 145161.Google Scholar
Forti, P., Postpischl, D., 1986. May the growth axis of stalagmites be considered as recorders of historic and prehistoric earthquakes? Preliminary results from the Bologna karst area (Italy). Int. Symp. Engineering Geology Problems in Seismic area 1, Bari, 1, 183193.Google Scholar
Forti, P., Postpischl, D., 1988a. Datazione radiometrica di eventi palaeosismici. in : Unguendoli, M. Ed., Studi e Ricerche CUSL, Bologna.Google Scholar
Forti, P., Postpischl, D., 1988b. Seismotectonics and radiometric dating of karst sediments. Proc. Hist.Seismol. Central Eastern Mediterranean Region ENEA, Roma, 321332.Google Scholar
Gilli, E., 1986. Néotectonique dans les massifs karstiques, un exemple dans les Préalpes de Nice, la grotte des Deux Gourdes. Karstologia 8, 5052.Google Scholar
Gilli, E., Levret, A., Sollogoub, P., Delange, P., 1999. Research on the February 18, 1996 earthquake in the caves of Saint-Paul-de-Fe-nouillet area (eastern Pyrenees, France). Geodinamica Acta -Karst and tectonics :Han-98, 12, 3–4 : 143158.Google Scholar
Lemeille, F., Cushing, M., Carbon, D., Grellet, B., Bitterli, T., Flehoc, G., Innocent, C., 1999. Co-seismic ruptures and deformations recorded by speleothems in the epicentral zone of the Basel earthquake. Geodinamica Acta – Karst and tectonics : Han-98, 12, 3–4: 179192.Google Scholar
Massonnet, Ch., Résistance des Matériaux, Ed. Dunod 1962, pp 5657 Google Scholar
Moretti, A., Vulcano, A., 1999. Uso di speleotemi quali possibli indicatori della massima accelerazione sismica al sito. GEOITALIA, 2° Forum FIST, Vol 1. 355357.Google Scholar
Postpischl, D., Ahostini, S., Forti, P., Quinif, Y., 1991. Palaeoseismicity from karst sediments : the ‘Grotta del Cervo’ cave case study (Central Italy). Tectonophysics 193 : 3344.Google Scholar
Quinif, Y., 1996. Enregistrement et datation des effets sismotec-toniques par l’étude des spéléothèmes. Annales de la Société Géologique de Belgique 119, 1 : 113.Google Scholar