Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T09:40:28.821Z Has data issue: false hasContentIssue false

Negation detection for sentiment analysis: A case study in Spanish

Published online by Cambridge University Press:  07 July 2020

Salud María Jiménez-Zafra*
Affiliation:
SINAI, Centro de Estudios Avanzados en TIC (CEATIC), Universidad de Jaén, Spain
Noa P. Cruz-Díaz
Affiliation:
Centro de Excelencia de Inteligencia Artificial, Bankia, Madrid, Spain
Maite Taboada
Affiliation:
Discourse Processing Lab, Simon Fraser University, Burnaby, BC, Canada
María Teresa Martín-Valdivia
Affiliation:
SINAI, Centro de Estudios Avanzados en TIC (CEATIC), Universidad de Jaén, Spain
*
*Corresponding author. E-mail: [email protected]

Abstract

Accurate negation identification is one of the most important tasks in the context of sentiment analysis. In order to correctly interpret the sentiment value of a particular expression, we need to identify whether it is in the scope of negation. While much of the work on negation detection has focused on English, we have seen recent developments that provide accurate identification of negation in other languages. In this paper, we provide an overview of negation detection systems and describe an implementation of a Spanish system for negation cue detection and scope identification. We apply this system to the sentiment analysis task, confirming also for Spanish that improvements can be gained from accurate negation detection. The paper contributes an implementation of negation detection for sentiment analysis in Spanish and a detailed error analysis. This is the first work in Spanish in which a machine learning negation processing system is applied to the sentiment analysis task. Existing methods have used negation rules that have not been assessed, perhaps because the first Spanish corpus annotated with negation for sentiment analysis has only recently become available.

Type
Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amores, M., Arco, L. and Barrera, A. (2016). Efectos de la negación, modificadores, jergas, abreviaturas y emoticonos en el análisis de sentimiento. In IWSW, pp. 4353.Google Scholar
Baker, K., Bloodgood, M., Dorr, B.J., Callison-Burch, C., Filardo, N.W., Piatko, C., Levin, L. and Miller, S. (2012). Modality and negation in SIMT use of modality and negation in semantically-informed syntactic MT. Computational Linguistics 38 (2), 411438.CrossRefGoogle Scholar
Barnes, J., Velldal, E. and Øvrelid, L. (2019). Improving sentiment analysis with multi-task learning of negation. arXiv preprint arXiv:1906.07610.Google Scholar
Beltrán, J. and González, M. (2019). Detection of negation cues in Spanish: the CLiC-Neg system. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019), CEUR Workshop Proceedings, Bilbao, Spain, 2019. CEUR-WS.Google Scholar
Benamara, F., Chardon, B., Mathieu, Y.Y., Popescu, V. and Asher, N. (2012). How do negation and modality impact opinions? In Proceedings of the ACL-2012 Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics (ExProM-2012), Jeju, Korea, 2012, pp. 1018.Google Scholar
Benamara, F., Inkpen, D. and Taboada, M. (2018). Introduction to the special issue on language in social media: exploiting discourse and other contextual information. Computational Linguistics 44 (4), 1663–681.CrossRefGoogle Scholar
Blanco, E. and Moldovan, D. (2014). Retrieving implicit positive meaning from negated statements. Natural Language Engineering 20 (4), 501535.CrossRefGoogle Scholar
Bosque, I., García de la Concha, V. and López Morales, H. (2009). Nueva gramática de la lengua española: morfologa y sintaxis. Madrid: Real Academia Española.Google Scholar
Boucher, J.D. and Osgood, C.E. (1969). The Pollyanna hypothesis. Journal of Verbal Learning and Verbal Behaviour 8, 18.CrossRefGoogle Scholar
Brooke, J., Tofiloski, M. and Taboada, M. (2009). Cross-linguistic sentiment analysis: from English to Spanish. In Proceedings of the International Conference RANLP-2009, pp. 5054.Google Scholar
Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F. and Buchanan, B.G. (2001). A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics 34 (5), 301310.CrossRefGoogle ScholarPubMed
Costumero, R., López, F., Gonzalo-Martn, C., Millan, M. and Menasalvas, E. (2014). An approach to detect negation on medical documents in Spanish. In International Conference on Brain Informatics and Health. Springer, pp. 366375.CrossRefGoogle Scholar
Cotik, V., Stricker, V., Vivaldi, J. and Hontoria, H.R. (2016). Syntactic methods for negation detection in radiology reports in Spanish. In Proceedings of the 15th Workshop on Biomedical Natural Language Processing, BioNLP 2016: Berlin, Germany, August 12, 2016. Association for Computational Linguistics, pp. 156165.CrossRefGoogle Scholar
Councill, I.G., McDonald, R. and Velikovich, L. What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis. In Proceedings of the Workshop on Negation and Speculation in Natural Language Processing, Uppsala, Sweden, 2010, pp. 5159.Google Scholar
Cruz, N.P., Taboada, M. and Mitkov, R. (2016). A machine-learning approach to negation and speculation detection for sentiment analysis. Journal of the Association for Information Science and Technology 67 (9), 21182136.CrossRefGoogle Scholar
Cruz Díaz, N.P. and López, M.J.M. (2019). Negation and speculation detection. In Natural Language Processing 13. John Benjamins Publishing Company, Amsterdam, The Netherlands.Google Scholar
Domínguez-Mas, L., Ronzano, F. and Furlong, L.I. (2019). Supervised learning approaches to detect negation cues in Spanish reviews. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019), CEUR Workshop Proceedings, Bilbao, Spain, 2019. CEUR-WS.Google Scholar
Fabregat, H., Martínez-Romo, J. and Araujo, L. (2018). Deep learning approach for negation cues detection in Spanish at NEGES 2018. In Proceedings of NEGES 2018: Workshop on Negation in Spanish, CEUR Workshop Proceedings, vol. 2174, pp. 4348.Google Scholar
Fabregat, H., Duque, A., Martínez-Romo, J. and Araujo, L. (2019). Extending a deep learning approach for negation cues detection in Spanish. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019), CEUR Workshop Proceedings, Bilbao, Spain, 2019. CEUR-WS.Google Scholar
Fancellu, F., Lopez, A. and Webber, B. (2016). Neural networks for negation scope detection. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 495504.CrossRefGoogle Scholar
Giudice, V. (2019). Aspie96 at NEGES (IberLEF 2019): negation cues detection in Spanish with character-level convolutional RNN and tokenization. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019), CEUR Workshop Proceedings, Bilbao, Spain, 2019. CEUR-WS.Google Scholar
Horn, L. (1989). A Natural History of Negation. Chicago: University of Chicago Press.Google Scholar
Israel, M. (2004). The pragmatics of polarity. In Horn, L. and Ward, G. (eds.), The Handbook of Pragmatics. Malden, MA: Blackwell, pp. 701723.Google Scholar
Jia, L., Yu, C. and Meng, W. (2009). The effect of negation on sentiment analysis and retrieval effectiveness. In Proceedings of the 18th ACM Conference on Information and Knowledge Management. ACM, pp. 1827–1830.CrossRefGoogle Scholar
Jiménez-Zafra, S.M., Martínez-Cámara, E., Martín-Valdivia, M.T. and Molina-González, M.D. (2015). Tratamiento de la Negación en el Análisis de Opiniones en Español. Procesamiento del Lenguaje Natural 54, 367–44.Google Scholar
Jiménez-Zafra, S.M., Martín-Valdivia, M.T., Martínez-Cámara, E. and Ureña-López, L.A. (2017). Studying the scope of negation for Spanish sentiment analysis on Twitter. IEEE Transactions on Affective Computing 10 (1), 129–141. ISSN 1949-3045. doi: 10.1109/TAFFC.2017.2693968. First published online on April 12, 2017.CrossRefGoogle Scholar
Jiménez-Zafra, S.M., Taulé, M., Martín-Valdivia, M.T., Ureña-López, L.A. and Martí, M.A. (2018). SFU ReviewSP-NEG: a Spanish corpus annotated with negation for sentiment analysis. A typology of negation patterns. Language Resources and Evaluation 52 (2), 533569. doi: 10.1007/s10579-017-9391-x.http://dx.doi.org/10.1007/s10579-017-9391-x. First published online on May 22, 2017.CrossRefGoogle Scholar
Jiménez-Zafra, S.M., Díaz, N.P.C., Morante, R. and Martín-Valdivia, M.T. (2019a). NEGES 2018: workshop on Negation in Spanish. Procesamiento del Lenguaje Natural 62, 2128.Google Scholar
Jiménez-Zafra, S.M., Díaz, N.P.C., Morante, R. and Martín-Valdivia, M.T. (2019b). NEGES 2019 task: negation in Spanish. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings, CEUR-WS, Bilbao, Spain, pp. 329341.Google Scholar
Jiménez-Zafra, S.M., Morante, R., Blanco, E., Martín-Valdivia, M.T. and Ureña-López, L.A. (2020). Detecting negation cues and scopes in Spanish. In Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC 2020), Marseille, France, May 11–16 2020. European Language Resources Association (ELRA), pp. 110.Google Scholar
Kennedy, A. and Inkpen, D. (2006). Sentiment classification of movie and product reviews using contextual valence shifters. Computational Intelligence 22 (2), 110125.CrossRefGoogle Scholar
Kim, J.-D., Ohta, T., Pyysalo, S., Kano, Y. and Tsujii, J. (2009). Overview of BioNLP’09 shared task on event extraction. In Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing: Shared Task. Association for Computational Linguistics, pp. 19.CrossRefGoogle Scholar
Konstantinova, N., De Sousa, S.C.M., Díaz, N.P.C., López, M.J.M., Taboada, M. and Mitkov, R. (2012). A review corpus annotated for negation, speculation and their scope. In Proceedings of LREC 2012, pp. 31903195.Google Scholar
Lapponi, E., Read, J. and Øvrelid, L. (2012). Representing and resolving negation for sentiment analysis. In 2012 IEEE 12th International Conference on Data Mining Workshops. IEEE, pp. 687692.CrossRefGoogle Scholar
Liddy, E.D., Paik, W., McKenna, M.E., Weiner, M.L., Edmund, S.Y., Diamond, T.G., Balakrishnan, B. and Snyder, D.L. (2000). User interface and other enhancements for natural language information retrieval system and method. US Patent 6,026,388.Google Scholar
Liu, B. (2015). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Loharja, H., Padró, L. and Turmo, J. (2018). Negation cues detection using CRF on Spanish product review text at NEGES 2018. In Proceedings of NEGES 2018: Workshop on Negation in Spanish, CEUR Workshop Proceedings, vol. 2174, pp. 4954.Google Scholar
Martínez-Cámara, E., Martín-Valdivia, M.T., Molina-González, M.D. and Ureña-López, L.A. (2013). Bilingual experiments on an opinion comparable corpus. In Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 8793.Google Scholar
Miranda, C.H., Guzmán, J. and Salcedo, D. (2016). Minería de Opiniones basado en la adaptación al español de ANEW sobre opiniones acerca de hoteles. Procesamiento del Lenguaje Natural 56, 2532.Google Scholar
Mitchell, K.J., Becich, M.J., Berman, J.J., Chapman, W.W., Gilbertson, J.R., Gupta, D., Harrison, J., Legowski, E. and Crowley, R.S. (2004). Implementation and evaluation of a negation tagger in a pipeline-based system for information extraction from pathology reports. In Medinfo, pp. 663667.Google Scholar
Morante, R. and Blanco, E. (2012). * SEM 2012 shared task: resolving the scope and focus of negation. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), vol. 1, pp. 265274.Google Scholar
Morante, R. and Sporleder, C. (2012). Modality and negation: An introduction to the special issue. Computational Linguistics 38 (2), 223260. Special issue on modality and negation. Computational Linguistics 38 (2).CrossRefGoogle Scholar
Mowery, D.L., Velupillai, S., South, B.R., Christensen, L., Martinez, D., Kelly, L., Goeuriot, L., Elhadad, N., Pradhan, S., Savova, G. and Chapman, W. W. (2014). Task 2: ShARe/CLEF eHealth evaluation lab 2014. In Proceedings of CLEF 2014 Sheffield, United Kingdom, pp. 3142.Google Scholar
Padró, L. and Stanilovsky, E. (2012). FreeLing 3.0: towards wider multilinguality. In Proceedings of LREC 2012, Istanbul, Turkey, May 2012.Google Scholar
Pang, B. and Lee, L. (2004). A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, p. 271.CrossRefGoogle Scholar
Payne, T.E. (1997). Describing Morphosyntax: A Guide for Field Linguists. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Polanyi, L. and Zaenen, A. (2006). Contextual valence shifters. In Shanahan, J.G., Qu, Y. and Wiebe, J. (eds.), Computing Attitude and Affect in Text: Theory and Applications. Dordrecht: Springer, pp. 110.Google Scholar
Potts, C. (2011a). On the negativity of negation. In Proceedings of SALT 20: Semantics and Linguistic Theory, Vancouver, 2011, pp. 636659.CrossRefGoogle Scholar
Potts, C. (2011b). Sentiment symposium tutorial. In Sentiment Analysis Symposium, San Francisco, California, November, 2011. Alta Plana Corporation. http://sentiment.christopherpotss.net/.Google Scholar
Qian, Z., Li, P., Zhu, Q., Zhou, G., Luo, Z. and Luo, W. (2016). Speculation and negation scope detection via convolutional neural networks. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 815825.CrossRefGoogle Scholar
Ribeiro, F.N., Araújo, M., Gonçalves, P., Gonçalves, M.A. and Benevenuto, F. (2016). SentiBench: a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Science 5 (23), 129.CrossRefGoogle Scholar
Rozin, P. and Royzman, E.B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review 5 (4), 296320.CrossRefGoogle Scholar
Saurí, R. (2008). A Factuality Profiler for Eventualities in Text. PhD Dissertation, Brandeis University.Google Scholar
Savova, G.K., Masanz, J.J., Ogren, P.V., Zheng, J., Sohn, S., Kipper-Schuler, K.C. and Chute, C.G. (2010). Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. Journal of the American Medical Informatics Association 17 (5), 507513.CrossRefGoogle ScholarPubMed
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A. and Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 16311642.Google Scholar
Stricker, V., Iacobacci, I. and Cotik, V. (2015). Negated findings detection in radiology reports in Spanish: an adaptation of NegEx to Spanish. In IJCAI-Workshop on Replicability and Reproducibility in Natural Language Processing: Adaptative Methods, Resources and Software, Buenos Aires, Argentina, 2015.Google Scholar
Taboada, M. (2016). Sentiment analysis: an overview from Linguistics. Annual Review of Linguistics 2, 325347.CrossRefGoogle Scholar
Taboada, M., Anthony, C. and Voll, K.D. (2006). Methods for creating semantic orientation dictionaries. In Proceedings of LREC 2016, pp. 427432.Google Scholar
Taboada, M., Brooke, J., Tofiloski, M., Voll, K. and Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics 37 (2), 267307CrossRefGoogle Scholar
Taboada, M., Trnavac, R. and Goddard, C. (2017). On being negative. Corpus Pragmatics 1 (1), 5776.CrossRefGoogle Scholar
Uzuner, ö, South, B.R., Shen, S. and DuVall, S.L. (2011). 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association 18 (5), 552556.CrossRefGoogle ScholarPubMed
Vilares, D., Alonso, M.A. and Gómez-Rodríguez, C. (2013). Clasificación de polaridad en textos con opiniones en español mediante análisis sintáctico de dependencias. Procesamiento del Lenguaje Natural 5, 1320.Google Scholar
Vilares, D., Alonso, M.A. and Gómez-Rodríguez, C. (2015). A syntactic approach for opinion mining on Spanish reviews. Natural Language Engineering 21 (1), 139163.CrossRefGoogle Scholar
Vincze, V., Szarvas, G., Farkas, R., Móra, G. and Csirik, J. (2008). The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics 9 (11), S9.CrossRefGoogle Scholar
Wang, H.-y. (2006). La negación en español, chino, inglés y alemán. Encuentros en Catay 2, 129157. ISSN 1023-6961.Google Scholar
Wiegand, M., Balahur, A., Roth, B., Klakow, D. and Montoyo, A. (2010) A survey on the role of negation in sentiment analysis. In Proceedings of the Workshop on Negation and Speculation in Natural Language Processing, Uppsala, Sweden, 2010, pp. 6068 Google Scholar