Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T17:03:13.530Z Has data issue: false hasContentIssue false

On the Singularity of Green Functions in Markov Processes II

Published online by Cambridge University Press:  22 January 2016

Mamoru Kanda*
Affiliation:
Department of Mathematics College of General Education, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the previous paper [3] we have studied Green functions with singularity φ ∈ Φ, especially in connection with regular points.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1970

References

[1] Herz, C.S., Theorie elementaire des distributions de Beurling, lecture note.Google Scholar
[2] Hunt, G.A., Markoff processes and potentials. 2, Illinois J. Math. (1957), 316369.Google Scholar
[3] Kanda, M., On the singularity of Green functions in Markov processes, Nagoya Math. J. Vol. 33, (1968), 2152.Google Scholar
[4] Orey, S., Polar sets for Processes with Stationary Independent Increments, Markov Processes and Potential Theory Edited by J. Chover, John Wiley & Sons, Inc., 1967.Google Scholar
[5] Taylor, S.J., On the connection between Hausdorff measures and generalized capacity. Proc. Cambridge Philos. Soc, 57 (1961), 524531.Google Scholar