No CrossRef data available.
Article contents
On the analytic function which appears in Kronecker’s limit formula for CM-fields
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Hecke stated in [1] Kronecker’s limit formula for CM-fields without proof, in which “Die zu log η(z) analog Funktion” appears, and he investigated in [3] the behaviors of this function under modular substitutions. S. Konno also discussed Kronecker’s limit formula for CM-fields in [4].
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1986
References
[1]
Hecke, E., Über die Konstruktion der Klassenkörper reeller quadratischer Körper mit Hilfe von automorphen Funktionen, Math. Werke, Göttingen • Vandenhoeck & Ruprecht, 1959, 64–68.Google Scholar
[2]
Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Werke, Gottingen’Vandenhoeck & Ruprecht, 1959, 215–234.Google Scholar
[3]
Hecke, E., Analytische Funktionen und algebraische Zahlen, I, II, Math. Werke Göttingen. Vandenhoeck & Ruprecht, 1959, 336–360, 381–404.Google Scholar
[4]
Konno, S., On Kronecker’s limit formula in a totally imaginary quadratic field over a totally real algebraic number field, J. Math. Soc. Japan, 17 (1965), 411–424.Google Scholar
[5]
Siegel, C. L., Uber die Fourierschen Koeffizienten von Modulformen, Göttingen Nachr. Akad. Wiss., 1970, 15–56.Google Scholar
[6]
Weil, A., Elliptic functions according to Eisenstein and Kronecker, Sprirger-Verlag-Berlin-Heidelberg-New York (1976).Google Scholar