No CrossRef data available.
Article contents
On Hyperbolicity of balanced domains
Published online by Cambridge University Press: 22 January 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We compare the hyperbolicity with respect to the Lempert function with the other hyperbolicities in the class of pseudoconvex balanced domains.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2004
References
[1]
Azukawa, K., Hyperbolicity of circular domains, Tôhoku Math. J., 35 (1983), 259–265.Google Scholar
[2]
Barth, T. J., Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc., 79 (1980), 556–558.Google Scholar
[3]
Jarnicki, M. and Pflug, P., Invariant Distances and Metrics in Complex Analysis, De Gruyter Expositions in Math. 9, Walter de Gruyter, Berlin, New York, 1993.Google Scholar
[4]
Kobayashi, S., Hyperbolic Complex Spaces, Grundlehren der mathematischen Wissenschaften vol. 318, Springer Verlag, Berlin, Heidelberg, New York, 1998.Google Scholar
[5]
Kodama, A., Boundedness of circular domains, Proc. Japan Acad., Ser. A Math. Sci., 58 (1982), 227–230.Google Scholar
[6]
Park, S.-H., Tautness and Kobayashi hyperbolicity, Ph. D. Thesis, Universität Oldenburg (2003).Google Scholar
[7]
Sadullaev, A., Schwarz lemma for circular domains and its applications, Math. Notes, 27 (1980), 120–125.Google Scholar
[8]
Zwonek, W., On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math., 72 (1999), 304–314.Google Scholar