Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:27:29.106Z Has data issue: false hasContentIssue false

Formulae for the relative class number of an imaginary abelian field in the form of a determinant

Published online by Cambridge University Press:  22 January 2016

Radan Kučera*
Affiliation:
Department of Mathematics, Faculty of Science, Masaryk University, Janáčkovo nám. 2a, 662 95 Brno, Czech Republic, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is in the literature a lot of determinant formulae involving the relative class number of an imaginary abelian field. Usually such a formula contains a factor which is equal to zero for many fields and so it gives no information about the class number of these fields. The aim of this paper is to show a way of obtaining most of these formulae in a unique fashion, namely by means of the Stickelberger ideal. Moreover some new and non-vanishing formulae are derived by a modification of Ramachandra’s construction of independent cyclotomic units.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[1] Agoh, T. and Skula, L., Kummer type congruences and Stickelberger subideals, Acta Arith., 75 (1996), 235250.Google Scholar
[2] Carlitz, L. and Olson, F. R., Maillet’s determinant, Proc. Amer. Math. Soc., 6 (1955), 265269.Google Scholar
[3] Dohmae, K., Demjanenko’s matrix for imaginary abelian number fields of odd conductors, Proc. Japan Acad., 70 (1994), 292294.Google Scholar
[4] Endô, A., The relative class numbers of certain imaginary abelian number fields and determinants, J. Number Theory, 34 (1990), 1320.CrossRefGoogle Scholar
[5] Fuchs, P., Maillet’s determinant and a certain basis of the Stickelberger ideal, Tatra Mount. Math. Publ., 11 (1997), 121128.Google Scholar
[6] Girstmair, K., An index formula for the relative class number of an abelian number field, J. Number Theory, 32 (1989), 100110.CrossRefGoogle Scholar
[7] Girstmair, K., On the cosets of the 2q-th power group in the unit group modulo p, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 217232.Google Scholar
[8] Girstmair, K., The relative class number of imaginary cyclic fields of degrees 4, 6, 8, and 10, Math. of Comp., 61 (1993), 881887.Google Scholar
[9] Hasse, H., Uber die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.Google Scholar
[10] Hazama, F., Demjanenko matrix, class number, and Hodge group, J. Number Theory, 34 (1990), 174177.CrossRefGoogle Scholar
[11] Hazama, F., Hodge cycles on the jacobian variety of the Catalan curve, Compositio Math., 107 (1997), 339353.CrossRefGoogle Scholar
[12] Hirabayashi, M., A relative class number formula for an imaginary abelian field by means of Demjanenko matrix, Proceedings of Conference on Analytic and Elementary Number Theory, Viena 1996 (Nowak, W. G. and Schoißengeier, J., eds.), pp. 8191.Google Scholar
[13] Hirabayashi, M., A generalization of Maillet and Demjanenko determinants, preprint (1996).Google Scholar
[14] Kanemitsu, S. and Kuzumaki, T., On a generalization of the Maillet determinant, preprint (1997).Google Scholar
[15] Kühnová, J., Maillet’s determinant Dpn+1, Arch. Math. (Brno), 15 (1979), 209212.Google Scholar
[16] Kuˇcera, R., On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory, 56 (1996), 139166.Google Scholar
[17] Lettl, G., Stickelberger elements and cotangent numbers, Expositiones Math., 10 (1992), 171182.Google Scholar
[18] Metsänkylä, T., Bemerkungen über den ersten Faktor der Klassenzahl des Kreis-körpers, Ann. Univ. Turku. Ser. A I, 105 (1967), 15 pp.Google Scholar
[19] Okada, S., Generalized Maillet determinant, Nagoya Math. J., 94 (1984), 165170.CrossRefGoogle Scholar
[20] Sands, J. W. and Schwarz, W., A Demjanenko matrix for abelian fields of prime power conductor, J. Number Theory, 52 (1995), 8597.Google Scholar
[21] Schwarz, W., Demjanenko matrix and 2-divisibility of class numbers, Arch. Math. (Basel), 60 (1993), 154156.CrossRefGoogle Scholar
[22] Sinnott, W., On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math., 108 (1978), 107134.CrossRefGoogle Scholar
[23] Sinnott, W., On the Stickelberger ideal and the circular units of an abelian field, Inv. Math., 62 (1980), 181234.CrossRefGoogle Scholar
[24] Skula, L., Another proof of Iwasawa’s class number formula, Acta Arith., 39 (1981), 16.Google Scholar
[25] Skula, L., The Stickelberger ideal and the Demjanenko matrix, Algebraic Cycles and Related Topics (Hazama, F., ed.), World Scientific, Singapore (1995), pp. 6976.Google Scholar
[26] Skula, L., On a special ideal contained in the Stickelberger ideal, J. Number Theory, 58 (1996), 173195.Google Scholar
[27] Tateyama, K., Maillet’s determinant, Sci. Papers Coll. Gen. Edu. Univ. Tokyo, 32 (1982), 97100.Google Scholar
[28] Tsumura, H., On Demjanenko’s matrix and Maillet’s determinant for imaginary abelian number fields, J. Number Theory, 60 (1996), 7079.Google Scholar
[29] Wang, K., On Maillet determinant, J. Number Theory, 18 (1984), 306312.Google Scholar
[30] Washington, L. C., Introduction to cyclotomic fields, Springer-Verlag, New York, 1982.Google Scholar