Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T09:46:04.709Z Has data issue: false hasContentIssue false

A FUNCTIONAL LOGARITHMIC FORMULA FOR THE HYPERGEOMETRIC FUNCTION $_{3}F_{2}$

Published online by Cambridge University Press:  14 September 2018

MASANORI ASAKURA
Affiliation:
Department of Mathematics, Hokkaido University, Sapporo, 060-0810 Japan email [email protected]
NORIYUKI OTSUBO
Affiliation:
Department of Mathematics and Informatics, Chiba University, Chiba, 263-8522 Japan email [email protected]

Abstract

We give a sufficient condition for the hypergeometric function $_{3}F_{2}$ to be a linear combination of the logarithm of algebraic functions.

Type
Article
Copyright
© 2018 Foundation Nagoya Mathematical Journal  

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archinard, N., Hypergeometric abelian varieties , Canad. J. Math. 55 (2003), 897932.10.4153/CJM-2003-037-4Google Scholar
Asakura, M. and Fresán, J., On the Gross–Deligne conjecture for variations of Hodge–de Rham structures, preprint.Google Scholar
Asakura, M. and Otsubo, N., Regulators on $K_{1}$ of hypergeometric fibrations, to appear in the Proceedings of Conference “Arithmetic $L$ -functions and Differential Geometric Methods (Regulators IV)”, arXiv:1709.04144.Google Scholar
Asakura, M. and Otsubo, N., CM periods, CM regulators and hypergeometric functions, II , Math. Z. 289(3–4) (2018), 13251355.10.1007/s00209-017-2001-1Google Scholar
Asakura, M., Otsubo, N. and Terasoma, T., An algebro-geometric study of special values of hypergeometric functions 3 F 2 , Nagoya Math. J. 236 (2019), 4762.Google Scholar
Bailey, W. N., Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics 32 , Stechert-Hafner, Inc., New York, 1964.Google Scholar
Beukers, F. and Heckman, G., Monodromy for the hypergeometric function n F n-1 , Invent. Math. 95(2) (1989), 325354.10.1007/BF01393900Google Scholar
Erdélyi, A. (eds), Higher transcendental functions, Vol. 1, McGrow-Hill, New York, 1953.Google Scholar
Fedorov, R., Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, arXiv:1505.01704.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (eds), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.Google Scholar
Slater, L. J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.Google Scholar
Steenbrink, J., Limits of Hodge structures , Invent. Math. 31(3) (1976), 229257.10.1007/BF01403146Google Scholar