A FUNCTIONAL LOGARITHMIC FORMULA FOR THE HYPERGEOMETRIC FUNCTION ${}_{3}F_{2}$

MASANORI ASAKURA and NORIYUKI OTSUBO

Dedicated to the 60th birthday of Professor Shuji Saito

Abstract. We give a sufficient condition for the hypergeometric function ${}_{3}F_{2}$ to be a linear combination of the logarithm of algebraic functions.

§1. Introduction

For $\alpha_i, \beta_j \in \mathbb{C}$ with $\beta_j \notin \mathbb{Z}_{\leq 0}$, the generalized hypergeometric function is defined by a power series expansion

$$
{}_pF_{p-1}\left(\frac{\alpha_1,\ldots,\alpha_p}{\beta_1,\ldots,\beta_{p-1}};x\right)=\sum_{n=0}^\infty\frac{(\alpha_1)_n\cdots(\alpha_p)_n}{(\beta_1)_n\cdots(\beta_{p-1})_n}\frac{x^n}{n!},
$$

where

$$
(\alpha)_0 := 1, \qquad (\alpha)_n := \alpha(\alpha + 1) \cdots (\alpha + n - 1) \quad \text{for } n \geq 1
$$

denotes the Pochhammer symbol. When $p = 2$, this is called the Gauss hypergeometric function. This has an analytic continuation to C, and then becomes a multivalued function which is holomorphic on $\mathbb{C} \setminus \{0, 1\}.$ A number of formulas have been discovered since 19th century (e.g., [\[10,](#page-17-0) Chapters 15, 16]), and they have been applied in various areas in mathematics. At present, the theory of hypergeometric function is one of the most important tools in mathematics.

In [\[5\]](#page-17-1), we discussed the special values of ${}_3F_2\left(\begin{smallmatrix}1,1,q\\a,b\end{smallmatrix};x\right)$ at $x=1$, and gave a sufficient condition for it to be a $\overline{\mathbb{Q}}$ -linear combination of logarithms of algebraic numbers, namely

$$
{}_3F_2\left(\frac{1,1,q}{a,b};1\right) \in \overline{\mathbb{Q}} + \overline{\mathbb{Q}} \log \overline{\mathbb{Q}}^{\times}
$$

Received January 25, 2018. Revised August 23, 2018. Accepted August 23, 2018.

²⁰¹⁰ Mathematics subject classification. Primary 33C20; Secondary 19F27, 11G15, 14D07, 14K22.

c 2018 Foundation Nagoya Mathematical Journal

30 M. ASAKURA AND N. OTSUBO

$$
:= \left\{ a + \sum_{i=1}^n b_i \log c_i \mid a, b_i, c_i \in \overline{\mathbb{Q}}, \ c_i \neq 0, \ n \in \mathbb{Z}_{\geqslant 0} \right\}.
$$

The goal of this paper is to give its functional version. To be precise, set

$$
\overline{\mathbb{Q}(x)} + \overline{\mathbb{Q}(x)} \log \overline{\mathbb{Q}(x)}^{\times}
$$

 := $\left\{ f + \sum_{i=1}^{n} g_i \log h_i \middle| f, g_i, h_i \in \overline{\mathbb{Q}(x)}, h_i \neq 0, n \in \mathbb{Z}_{\geq 0} \right\}$

where $\overline{\mathbb{Q}(x)}$ denotes the algebraic closure of the field of rational functions $\mathbb{Q}(x)$. We say that the *logarithmic formula* holds for a function $F(x)$ if it belongs to the above set. The main theorem gives a sufficient condition on (a, b, q) for ${}_{3}F_{2}(\frac{1,1,q}{a,b}; x)$ to satisfy a logarithmic formula. Recall that two proofs are presented in [\[5\]](#page-17-1). One of the proofs uses hypergeometric fibrations and the other uses Fermat surfaces. In this paper we follow the method of hypergeometric fibrations, while employing a new ingredient from [\[3\]](#page-17-2). It seems impossible to prove the functional log formula using the method of Fermat surfaces.

By developing the technique here, we can get *explicit* log formulas in some cases. For example, let

$$
e_1(x) := \frac{1}{2} + x^{-1/3} \left(-\frac{1}{4} + \frac{x}{8} + \frac{1}{4} \sqrt{1-x} \right)^{1/3}
$$

$$
+ x^{-1/3} \left(-\frac{1}{4} + \frac{x}{8} - \frac{1}{4} \sqrt{1-x} \right)^{1/3}
$$

$$
e_2(x) := \frac{1}{2} + e^{-2\pi i/3} x^{-1/3} \left(-\frac{1}{4} + \frac{x}{8} + \frac{1}{4} \sqrt{1-x} \right)^{1/3}
$$

$$
+ e^{2\pi i/3} x^{-1/3} \left(-\frac{1}{4} + \frac{x}{8} - \frac{1}{4} \sqrt{1-x} \right)^{1/3}
$$

$$
e_3(x) := \frac{1}{2} + e^{2\pi i/3} x^{-1/3} \left(-\frac{1}{4} + \frac{x}{8} + \frac{1}{4} \sqrt{1-x} \right)^{1/3}
$$

$$
+ e^{-2\pi i/3} x^{-1/3} \left(-\frac{1}{4} + \frac{x}{8} - \frac{1}{4} \sqrt{1-x} \right)^{1/3}
$$

$$
p_{\pm} = p_{\pm}(x) := \left(\frac{1 \pm \sqrt{1-x}}{\sqrt{x}} \right)^{2/3}, \qquad q_j = q_j(x) := \frac{1 - \sqrt{3x} \cdot e_j(x)}{1 + \sqrt{3x} \cdot e_j(x)}.
$$

Then

$$
{}_{3}F_{2}\left(\begin{matrix}1,1,\frac{1}{2}\\ \frac{7}{6},\frac{11}{6}\end{matrix};x\right)
$$

= $\frac{5\sqrt{3}}{36}x^{-1/2}\left[(p_{+}+p_{-})\log\left(\frac{q_{1}}{q_{2}}\right)+(e^{\pi i/3}p_{+}+e^{-\pi i/3}p_{-})\log\left(\frac{q_{2}}{q_{3}}\right)\right].$

However, there remain technical difficulties arising from algebraic cycles to obtain explicit log formulas in more general cases.

§2. Main theorem

Let $\hat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n\mathbb{Z}$ be the completion, and $\hat{\mathbb{Z}}^{\times} = \varprojlim_n (\mathbb{Z}/n\mathbb{Z})^{\times}$ the group of units. The ring $\hat{\mathbb{Z}}$ acts on the additive group \mathbb{Q}/\mathbb{Z} in a natural way, and then it induces $\hat{\mathbb{Z}}^{\times} \cong \text{Aut}(\mathbb{Q}/\mathbb{Z})$. We denote by $\{x\} := x - |x|$ the fractional part of $x \in \mathbb{Q}$. The map $\{-\} : \mathbb{Q} \to [0, 1)$ factors through \mathbb{Q}/\mathbb{Z} , which we denote by the same notation.

THEOREM 2.1. (Logarithmic formula) Let q, $a, b \in \mathbb{Q}$ satisfy the property that none of q, a, b, q – a, q – b, q – a – b is an integer. Suppose

$$
1 = \{sa\} + \{sb\} + 2\{-sq\} - \{s(a-q)\} - \{s(b-q)\}
$$

(2.1)
$$
(\iff \min(\{sa\}, \{sb\}) < \{sq\} < \max(\{sa\}, \{sb\}))
$$

for $\forall s \in \hat{\mathbb{Z}}^{\times}$. Then

$$
{}_3F_2\left({\begin{array}{c}n_1, n_2, q\\a, b\end{array}}; x\right) \in \overline{\mathbb{Q}(x)} + \overline{\mathbb{Q}(x)} \log \overline{\mathbb{Q}(x)}^{\times}
$$

for any integers $n_i > 0$.

As we shall see in Section [4,](#page-15-0) one can shift the indices n_i, q, a, b by arbitrary integers by applying differential operators. Thus it is enough to prove the log formula for ${}_3F_2\left(\frac{1,1,q}{a, b}; x\right)$.

Recall the main theorem of [\[5\]](#page-17-1) which asserts that if

(2.2)
$$
2 = \{sq\} + \{s(a-q)\} + \{s(b-q)\} + \{s(q-a-b)\}
$$

for $\forall s \in \hat{\mathbb{Z}}^{\times}$, then

$$
{}_3F_2\left({1,\,1,\,q \atop a,\,\,b};\,1\right) \in \overline{\mathbb{Q}}+\overline{\mathbb{Q}}\log \overline{\mathbb{Q}}^\times
$$

as long as it converges ($\Leftrightarrow a+b>q+2$). It is easy to see $(2.1) \Rightarrow (2.2)$ $(2.1) \Rightarrow (2.2)$ while the converse is no longer true (e.g., $(a, b, q) = (1/6, 1/4, 1/2)$). Therefore Theorem [2.1](#page-2-2) does not imply all of the main theorem of [\[5\]](#page-17-1).

CONJECTURE 2.2. (Cf. $[5, Conjecture 5.2]$) The converse of Theorem [2.1](#page-2-2) is true.

In the seminal paper [\[7\]](#page-17-3), Beukers and Heckman gave a necessary and sufficient condition for $p_1 F_{p-1}$ to be an algebraic function, or equivalently for its monodromy group to be finite. Let $a_i, b_j \in \mathbb{Q}$. Then their theorem states that, under the condition that ${a_i} \neq {b_j}$ and ${a_i} \neq 0$,

$$
{}_{p}F_{p-1}\left(\begin{matrix}a_1,\ldots,a_p\\b_1,\ldots,b_{p-1}\end{matrix};x\right)\in\overline{\mathbb{Q}(x)}
$$

if and only if $({sa_1}, \ldots, {sa_p})$ and $(0, {sb_1}, \ldots, {sb_{p-1}})$ interlace for all $s \in \hat{\mathbb{Z}}^{\times}$ [\[7,](#page-17-3) Theorem 4.8]. Here we say that two sets $(\alpha_1, \ldots, \alpha_p)$ and $(\beta_1, \ldots, \beta_p)$ interlace if and only if

$$
\alpha_1 < \beta_1 < \cdots < \alpha_p < \beta_p \qquad \text{or} \qquad \beta_1 < \alpha_1 < \cdots < \beta_p < \alpha_p
$$

when ordering $\alpha_1 < \cdots < \alpha_p$ and $\beta_1 < \cdots < \beta_p$. In this terminology, [\(2.1\)](#page-2-0) is translated into that $(0, \{sq\})$ and $(\{sa\}, \{sb\})$ interlace. Our main Theorem [2.1](#page-2-2) is not directly related to their theorem, while they are obviously comparable.

§3. Hypergeometric fibrations

We mean by a *fibration* over a ring k a projective flat morphism of quasiprojective smooth k-schemes.

3.1 Definition

Let $f: X \to \mathbb{P}^1$ be a fibration over a field k. For simplicity we assume $k = \overline{k}$ and fix an embedding $k \subset \mathbb{C}$. Let R be a finite-dimensional semisimple commutative Q-algebra. We mean by a multiplication on $R^1f_*\mathbb{Q}$ by R a homomorphism $\rho: R \to \text{End}_{VHS}(R^1f_*\mathbb{Q}|_U)$ of rings where $U \subset \mathbb{P}^1$ is the maximal Zariski open set such that f is smooth over U. Let $e: R \to E$ be a projection onto a number field E . We say f is a hypergeometric fibration with multiplication by (R, e) (HG fibration) if the following conditions hold. We fix an inhomogeneous coordinate $t \in \mathbb{P}^1$.

- (a) f is smooth over $\mathbb{P}^1 \setminus \{0, 1, \infty\},\$
- (b) dim_E $H^1(X_t, \mathbb{Q})(e) = 2$ where $X_t = f^{-1}(t)$ is a general fiber and we write $V(e) := E \otimes_{e,R} V$ the e-part,
- (c) Let $Pic_f^0 \to \mathbb{P}^1 \setminus \{0, 1, \infty\}$ be the Picard fibration whose general fiber is the Picard variety $Pic^0(f^{-1}(t))$, and let $Pic^0_f(e)$ be the component associated to the e-part $R^1f_*\mathbb{Q}(e)$ (this is well defined up to isogeny). Then $Pic_f^0(e) \to \mathbb{P}^1 \setminus \{0, 1, \infty\}$ has totally degenerate semistable reduction at $t=1$.

The last condition (c) is equivalent to saying that the local monodromy T on $H^1(X_t, \mathbb{Q})(e)$ at $t = 1$ is unipotent and the rank of log monodromy $N := \log(T)$ is maximal, namely $\text{rank}(N) = \frac{1}{2} \dim_{\mathbb{Q}} H^1(X_t, \mathbb{Q})(e)$ (= [E : Q] by condition (b)).

3.2 HG fibration of Gauss type

Let $f: X \to \mathbb{P}^1$ be a fibration over $\overline{\mathbb{Q}}$ whose general fiber $X_t = f^{-1}(t)$ is the nonsingular projective model of the affine curve

(3.1)
$$
y^N = x^a (1-x)^b (1-tx)^{N-b}, \quad 0 < a, b < N, \text{ gcd}(N, a, b) = 1.
$$

f is smooth outside $\{0, 1, \infty\}$ so that the condition (a) is satisfied. The group μ_N of Nth roots of unity acts on $f^{-1}(t)$ by $(x, y, t) \mapsto (x, \zeta y, t)$ for $\zeta \in \mu_N$, which gives rise to a multiplication on $R^1f_*\mathbb{Q}$ by the group ring $R_0 := \mathbb{Q}[\mu_N].$

LEMMA 3.1. $[4, Proposition 3.1]$ $[4, Proposition 3.1]$ Let $e_0: R_0 := \mathbb{Q}[\mu_N] \to E_0$ be a projection onto a number field E_0 . Then (R_0, e_0) satisfies the conditions (b) and (c) if and only if $ad \neq 0$ and $bd \neq 0$ modulo N where $d := \sharp \text{Ker}[\mu_N \to R_0^{\times} \stackrel{eq}{\to}$ E_0^{\times} .

DEFINITION 3.2. We say that f is a HG fibration of Gauss type with multiplication by $(\mathbb{Q}[\mu_N], e)$ if $ad \not\equiv 0$ and $bd \not\equiv 0$ modulo N.

Let $\chi: R_0 \to \overline{\mathbb{Q}}$ be a homomorphism of \mathbb{Q} -algebras factoring through e. Let *n* be an integer such that $\chi(\zeta) = \zeta^{-n}$ for all $\zeta \in \mu_N$. Note $gcd(n, N) = 1$. By [\[1,](#page-17-5) p. 917, (13)], $H_{\text{dR}}^1(X_t)(\chi) \cap H^{1,0}$ is spanned by the 1-form

$$
\omega_n := \frac{x^{a_n}(1-x)^{b_n}(1-tx)^{c_n}}{y^n} dx,
$$

$$
a_n := \left\lfloor \frac{an}{N} \right\rfloor, \qquad b_n := \left\lfloor \frac{bn}{N} \right\rfloor, \qquad c_n := \left\lfloor \frac{Nn - bn}{N} \right\rfloor = n - b_n - 1.
$$

Let P_1 (resp. P_2) be a point of X_t above $x = 0$ (resp. $x = 1$). There are $gcd(N, a)$ -points above $x = 0$ (resp. $gcd(N, b)$ -points above $x = 1$). Let u be a path from P_1 to P_2 above the real interval $x \in [0, 1]$. It defines a homology cycle $u \in H_1(X_t, \{P_1, P_2\}; \mathbb{Z})$ with boundary. Put $d_1 := \gcd(N, a)$, $d_2 := \gcd(N, b)$. Let $\sigma \in \mu_N$ be an automorphism. Since $\sigma^{d_1} P_1 = P_1$ and $\sigma^{d_2} P_2 = P_2$, one has a homology cycle

(3.2)
$$
\delta(\sigma) := (1 - \sigma^{d_1})(1 - \sigma^{d_2})u \in H_1(X_t, \mathbb{Z}).
$$

By an integral expression of Gauss hypergeometric functions (e.g., [\[6,](#page-17-6) p. 4, 1.5] or [\[11,](#page-17-7) p. 20, (1.6.6)]), one has

(3.3)
$$
\int_{\delta(\sigma)} \omega_n = (1 - \zeta^{-nd_1})(1 - \zeta^{-nd_2}) \int_0^1 \omega_n
$$

(3.4)
$$
= (1 - \zeta^{-nd_1})(1 - \zeta^{-nd_2}) B(\alpha_n, \beta_n) {}_2F_1(\alpha_n, \beta_n, \alpha_n + \beta_n; t),
$$

where $B(\alpha, \beta) := \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha + \beta)$ is the beta function, ζ is defined by $\sigma(y) = \zeta y$ and we put

$$
\alpha_n := \left\{ \frac{-an}{N} \right\}, \qquad \beta_n := \left\{ \frac{-bn}{N} \right\}.
$$

This shows that the monodromy on the 2-dimensional $H_1(X_t, \mathbb{C})(\chi)$ is isomorphic to the monodromy of the hypergeometric equation

$$
(D_t(D_t + \alpha_n + \beta_n - 1) - t(D_t + \alpha_n)(D_t + \beta_n))(y) = 0, \quad D_t := t\frac{d}{dt}
$$

with the Riemann scheme

(3.5)
$$
\begin{Bmatrix} t = 0 & t = 1 & t = \infty \\ 0 & 0 & \alpha_n \\ 1 - \alpha_n - \beta_n & 0 & \beta_n \end{Bmatrix}
$$

In particular, the monodromy is irreducible as $\alpha_n, \beta_n \notin \mathbb{Z}$.

3.3 Hodge numbers

Let $f: X \to \mathbb{P}^1$ be a HG fibration with multiplication by (R_0, e_0) . Following [\[3,](#page-17-2) Section 4.1], we consider motivic sheaves $\mathscr M$ and $\mathscr H$ which are defined in the following way. Let $S := \mathbb{A}_{\overline{\mathbb{Q}}} \setminus \{0, 1\}$ be defined over $\overline{\mathbb{Q}}$ with coordinate λ . Let $\mathbb{P}_{S}^{1} := \mathbb{P}^{1} \times S$ and denote the coordinates by (t, λ) . Put $\mathbb{P}_{S}^{1} \supset \mathscr{U} := (\mathbb{A}_{\overline{\mathbb{Q}}}^{1} \setminus \{0,1\} \times S) \setminus \Delta$ where Δ is the diagonal subscheme. Let $l \geq 1$ be an integer. Let $\pi : \mathbb{P}^1_S \to \mathbb{P}^1_S$ be a morphism over S given by $(t, \lambda) \mapsto (\lambda - t^l, \lambda)$. Then we define

$$
\mathscr{M} := \pi_* \mathbb{Q} \otimes \text{pr}_1^* R^1 f_* \mathbb{Q} |_{\mathscr{U}}, \qquad \text{pr}_1 : \mathbb{P}_S^1 = \mathbb{P}^1 \times S \to \mathbb{P}^1
$$

a variation of Hodge–de Rham structures (VHdR) on $\mathcal U$ and

$$
\mathscr{H} := R^1 \text{pr}_{2*} \mathscr{M}, \qquad \text{pr}_2 : \mathscr{U} \to S
$$

a variation of mixed Hodge–de Rham structures (VMHdR) on S , where the terminology is as in $[3, \text{ Section 2.1}]$ or $[4, \text{ Section 2.1}]$. For the reader's convenience, we give a description of the stalk $H_a = \mathcal{H}|_{\{a\}}$ and $\mathscr{M}_a = \mathscr{M}|_{\text{pr}_2^{-1}(a)} = \mathscr{M}|_{\mathbb{A}^1 \setminus \{0,1,a\}}$ at $a \in S$ is given in the following way. Let $\pi_a: \mathbb{P}^1 \to \mathbb{P}^1$ be the map given by $t \mapsto a - t^l$. Let

be a Cartesian diagram, and i a desingularization along the singular fibers. Put $U_a := \pi_a^{-1}(\mathbb{A}^1 \setminus \{0, 1, a\})$. Then

$$
\mathcal{M}_a = \pi_{a*} \mathbb{Q} \otimes R^1 f_* \mathbb{Q}|_{\mathbb{A}^1 \setminus \{0,1,a\}} = \pi_{a*} \pi_a^* R^1 f_* \mathbb{Q}|_{\mathbb{A}^1 \setminus \{0,1,a\}}
$$

\n
$$
\cong \pi_{a*} R^1 f_{a*} \mathbb{Q}|_{\mathbb{A}^1 \setminus \{0,1,a\}},
$$

\n
$$
H_a = H^1(\mathbb{A}^1 \setminus \{0,1,a\}, \mathcal{M}_a)
$$

\n
$$
\cong H^1(U_a, R^1 f_{a*} \mathbb{Q}) \subset H^2(f_a^{-1}(U_a), \mathbb{Q}).
$$

The weights of $\mathscr H$ are at most 2, 3, 4, and hence there is an exact sequence

(3.7)
$$
0 \longrightarrow W_2\mathscr{H} \longrightarrow \mathscr{H} \longrightarrow \mathscr{H}/W_2 \longrightarrow 0
$$

of VMHdR structures on S . By (3.6) , there is a canonical surjective map

$$
(3.8) \tH2(Xa, \mathbb{Q})0 \longrightarrow W2Ha
$$

where we put $H^2(X_a, \mathbb{Q})_0 := \text{Ker}[H^2(X_a, \mathbb{Q}) \to H^2(f_a^{-1}(t), \mathbb{Q})], t \in U_a$.

Let μ_l be the group of *l*th roots of unity which acts on $\pi_*\mathbb{Q}$ in a natural way. Then $\mathscr M$ has multiplication by the group ring $R := R_0[\mu_l]$. Let $e: R \to E$ be a projection onto a number field E such that $\text{Ker}(e) \supset \text{Ker}(e_0)$. There is a unique embedding $E_0 \hookrightarrow E$ making the diagram

commutative.

For $\chi: R \to \overline{\mathbb{Q}}$ factoring through e, we denote by $V(\chi)$ the χ -part which is defined to be the subspace on which $r \in R$ acts as multiplication by $\chi(r)$.

THEOREM 3.3. Let T_p denote the local monodromy on $R^1f_*\overline{\mathbb{Q}}(\chi)$ at $t = p$. Let α_i^{χ} χ_j^{χ} (resp. β_j^{χ} $j \atop j$ for $j = 1, 2$ be rational numbers such that $e^{2\pi i \alpha_j^X}$ (resp. $e^{2\pi i \beta_j^X}$) are eigenvalues of T_0 (resp. T_∞). Let k be an integer such that $\chi(\zeta_l) = \zeta_l^k$ for $\zeta_l \in \mu_l$. Suppose that $k/l, -k/l + \beta_j^{\chi}$ $\alpha_j^{\chi} \notin \mathbb{Z}$ and $\alpha_1^{\chi} \in \mathbb{Z}$. Write $h_{\chi}^{p,2-p} := \dim_{\overline{\mathbb{Q}}} \mathrm{Gr}_F^p W_2\mathscr{H}(\chi)$. Put

$$
d_{\chi} := 2\{-k/l\} + \sum_{i=1}^{2} {\{\beta_i^{\chi}\}} - {\{\beta_i^{\chi} - k/l\}}.
$$

Then

$$
(h^{2,0}_\chi,h^{1,1}_\chi,h^{0,2}_\chi)=\begin{cases} (1,1,0) & \text{if } d_\chi=2,\\ (0,2,0) & \text{if } d_\chi=1,\\ (0,1,1) & \text{if } d_\chi=0.\end{cases}
$$

Note that d_{χ} takes values only in 0, 1 or 2. Indeed

$$
d_{\chi} = \overbrace{\{\beta_1^{\chi}\} + \{-k/l\} - \{\beta_1^{\chi} - k/l\}}^{\delta_1} + \overbrace{\{\beta_2^{\chi}\} + \{-k/l\} - \{\beta_2^{\chi} - k/l\}}^{\delta_2}
$$

and each δ_i is either 0 or 1.

Proof. We first note that $\dim_E W_2\mathscr{H}(e) = 2$ [\[3,](#page-17-2) Section 4.3]. We employ two results from [\[2\]](#page-17-8) and [\[9\]](#page-17-9), respectively. First of all, it follows from [\[2,](#page-17-8) Theorem 4.2] that one has the Hodge numbers of the determinant

$$
D := \det_E W_2 \mathcal{H}(e) = \bigwedge_E^2 W_2 \mathcal{H}(e).
$$
 The result is
\n
$$
(D_{\chi}^{4,0}, D_{\chi}^{3,1}, D_{\chi}^{2,2}, D_{\chi}^{1,3}, D_{\chi}^{0,4}) = \begin{cases} (0, 1, 0, 0, 0) & \text{if } d_{\chi} = 2, \\ (0, 0, 1, 0, 0) & \text{if } d_{\chi} = 1, \\ (0, 0, 0, 1, 0) & \text{if } d_{\chi} = 0 \end{cases}
$$

where we put $D_{\chi}^{p,4-p} := \dim \mathrm{Gr}_F^p D(\chi)$. Since $D_{\chi}^{p,4-p} = 1 \Leftrightarrow 2h_{\chi}^{2,0} + h_{\chi}^{1,1} = p$, this implies

$$
(h_{\chi}^{2,0}, h_{\chi}^{1,1}, h_{\chi}^{0,2}) = \begin{cases} (1,1,0) & \text{if } d_{\chi} = 2, \\ (0,2,0) \text{ or } (1,0,1) & \text{if } d_{\chi} = 1, \\ (0,1,1) & \text{if } d_{\chi} = 0 \end{cases}
$$

which completes the proof in the case $d_{\chi} \neq 1$. Suppose $d_{\chi} = 1$. We want to show that $(h^{2,0}_\chi, h^{1,1}_\chi, h^{0,2}_\chi) = (1, 0, 1)$ cannot happen. By [\[3,](#page-17-2) Theorem 5.8], the underlying connection of $W_2\mathscr{H}(\chi)$ is defined by the hypergeometric differential operator as in loc. cit. One can apply the main theorem in [\[9\]](#page-17-9) and then the possible triplets of the Hodge numbers are at most $(2, 0, 0), (0, 2, 0), (0, 0, 2)$. In particular, the case $(h^{2,0}_\chi, h^{1,1}_\chi, h^{0,2}_\chi) = (1, 0, 1)$ is excluded. This completes the proof in case $d_{\chi} = 1$. П

REMARK 3.4. For the latter half of the proof of Theorem [3.3,](#page-7-0) there is an alternative discussion without using the main theorem of [\[9\]](#page-17-9). Let π_0 : $\mathbb{P}^1 \to \mathbb{P}^1$ be the map given by $t \mapsto -t^l$. Let $\mathscr{M}_0 := \pi_{0*}\mathbb{Q} \otimes R^1 f_*\mathbb{Q}$ be a VHdR on $\mathbb{P}^1 \setminus \{0, 1, \infty\}$. Put $H_0 := H^1(\mathbb{P}^1 \setminus \{0, 1, \infty\}, \mathcal{M}_0)$. Let $\psi_{\lambda=0}$ denote the nearby cycle functor. Then one can construct an injection

$$
E \cong W_2H_0(e) \longrightarrow \psi_{\lambda=0}W_2\mathscr{H}(e)
$$

of mixed Hodge–de Rham structures. The cohomology group $W_2H_0(e)$ is studied in detail in [\[4\]](#page-17-4). In particular, if $d_{\chi} = 1$, then the Hodge type of $W_2H_0(\chi)$ is (1, 1). Hence $h_\chi^{1,1} > 0$ by the above injection, which excludes the case $(h_\chi^{2,0}, h_\chi^{1,1}, h_\chi^{0,2}) = (1, 0, 1).$

COROLLARY 3.5. $W_2\mathscr{H}(e)$ is a Tate VHdR of type $(1, 1)$ if and only if $d_{\chi} = 1$ for all $\chi : R \to \overline{\mathbb{Q}}$, equivalently

$$
2\{-sk_0/l\} + \sum_{i=1}^2 \{s\beta_i^{\chi_0}\} - \{s(\beta_i^{\chi_0} - k_0/l)\} = 1
$$

$$
\iff \{s\beta_1^{\chi_0}\} < \{sk_0/l\} < \{s\beta_2^{\chi_0}\} \quad or \quad \{s\beta_2^{\chi_0}\} < \{sk_0/l\} < \{s\beta_1^{\chi_0}\}
$$

for $\forall s \in \hat{\mathbb{Z}}^{\times}$ where χ_0 is a fixed one and $\beta_j^{\chi_0}, k_0$ are the rational numbers arising from χ_0 .

3.4 Beilinson regulator

Let $\psi_{t=1}$ be the nearby cycle functor along the function $t - 1$ on \mathscr{U} , and put

$$
C := \mathrm{Gr}_2^W \psi_{t=1} \mathscr{M} \cong \pi_* \mathbb{Q} |_{\{1\} \times S} \otimes (\mathrm{Gr}_2^W \psi_{t=1} R^1 f_* \mathbb{Q})
$$

a VHdR on S. The condition (c) in Section [3.1](#page-3-0) implies that the e-part $C(e)$ is of Hodge type $(1, 1)$. Recall from $\left[3, \text{Proposition 4.2}\right]$ that there is a natural embedding

$$
C(e) \otimes \mathbb{Q}(-1) \longrightarrow \mathscr{H}(e)/W_2.
$$

This gives a 1-extension

(3.9) $0 \longrightarrow W_2\mathscr{H}(e) \longrightarrow \mathscr{H}'(e) \longrightarrow C(e) \otimes \mathbb{Q}(-1) \longrightarrow 0$

of VMHdR with multiplication by E which is induced from (3.7) . Note $C(e)$ is one-dimensional over E and endowed with Hodge type $(1, 1)$ by (c) in Section [3.1.](#page-3-0)

In $[3, Section 5]$ we discussed the extension data of (3.9) . More precisely, let \mathcal{O}^{zar} be the Zariski sheaf of polynomial functions (with coefficients in \overline{Q}) on $S = \mathbb{A}_{\overline{Q}}^1 \setminus \{0, 1\}$ with coordinate λ . Let \mathcal{O}^{an} be the sheaf of analytic functions on $S^{an} = \mathbb{C}^{an} \setminus \{0, 1\}$. Let $a : S^{an} \to S^{zar}$ be the canonical morphism from the analytic site to the Zariski site. Set

$$
\mathscr{J} := \text{Coker}[a^{-1}F^2W_2\mathscr{H}_{\text{dR}} \oplus \iota(W_2\mathscr{H}_B) \to \mathscr{O}^{an} \otimes_{a^{-1}\mathscr{O}^{zar}} a^{-1}W_2\mathscr{H}_{\text{dR}}]
$$

a sheaf on the analytic site $\mathbb{C}^{an} \setminus \{0, 1\}$ where $\iota : \mathscr{H}_B \to a^{-1} \mathscr{H}_{dR}$ is the comparison map. Let $h : \widetilde{S} \to S$ be a generically finite and dominant map such that $\sqrt{l \lambda - 1} \in \overline{\mathbb{Q}(\widetilde{S})}$. Then $h^*C(e)$ is a direct sum of copies of the constant VHdR $\mathbb{Q}(-1)$. The connecting homomorphism arising from [\(3.9\)](#page-9-0) gives a map

$$
h^*C(e) \otimes \mathbb{Q}(1) \longrightarrow \text{Ext}^1_{\text{VMHdR}}(\mathbb{Q}, W_2\mathscr{H}(e) \otimes \mathbb{Q}(2))
$$

to the Yoneda extension group of VMHdR's on S where we simply write $h^*C(e) \otimes \mathbb{Q}(1) = \Gamma(\widetilde{S}, h^*C(e) \otimes \mathbb{Q}(1)).$ Combining this with the Carlson isomorphism (cf. $[3,$ Proposition 2.1]), we have

(3.10)
$$
\rho: h^*C(e) \otimes \mathbb{Q}(1) \longrightarrow \Gamma(\widetilde{S}^{an}, h^* \mathscr{J}(e)).
$$

A down-to-earth description of ρ is the following. Let $x \in h^*C(e) \otimes \mathbb{Q}(1)$. Let $e_{\text{dR},x} \in \mathscr{H}'(e)_{\text{dR}} \otimes \mathbb{Q}(2)$ and $e_{B,x} \in \mathscr{H}'(e)_B \otimes \mathbb{Q}(2)$ be liftings of x. Then $\rho(x) = \pm (\iota(e_{B,x}) - e_{\text{dR},x})$ (see also [\[3,](#page-17-2) Section 5.2]).

<https://doi.org/10.1017/nmj.2018.33> Published online by Cambridge University Press

The map ρ agrees with the *Beilinson regulator map* on the motivic cohomology supported on singular fibers up to sign in the following sense. Let $\widetilde{\pi} : \mathbb{P}^1_{\widetilde{S}}$
diagram \boldsymbol{S} $:= \mathbb{P}^1 \times_{\overline{\mathbb{Q}}} \widetilde{S} \to \mathbb{P}^1$ be given by $(s, \lambda') \mapsto h(\lambda') - s^l$. Consider the diagram

$$
X_{\widetilde{S}} \xrightarrow{i} \mathbb{P}_{\widetilde{S}}^{1} \times_{\mathbb{P}^{1}} X \longrightarrow X
$$
\n
$$
g \downarrow \qquad \qquad f_{\widetilde{S}} \downarrow \qquad \qquad f
$$
\n
$$
\widetilde{S} \longleftarrow \mathbb{P}_{\widetilde{S}}^{1} \xrightarrow{\widetilde{\pi}} \mathbb{P}^{1}
$$

with i desingularization and p the 2nd projection. Let

reg:
$$
H^3_{\mathcal{M}}(X_{\widetilde{S}}, \mathbb{Q}(2)) \longrightarrow H^3_{\mathcal{D}}(X_{\widetilde{S}}, \mathbb{Q}(2)) = \text{Ext}^3_{\text{MHM}(X_{\widetilde{S}})}(\mathbb{Q}, \mathbb{Q}(2))
$$

be the Beilinson regulator map where $MHM(\widetilde{S})$ denotes the category of mixed Hodge modules on \widetilde{S} . There is a canonical surjective map

$$
\mathrm{Ext}^3_{\mathrm{MHM}(X_{\widetilde{S}})}(\mathbb{Q},\mathbb{Q}(2)) \longrightarrow \mathrm{Ext}^1_{\mathrm{VMHdR}(\widetilde{S})}(\mathbb{Q},R^2g_*\mathbb{Q}(2)).
$$

Let $U_{\widetilde{S}} \subset \mathbb{P}^1_{\widetilde{S}}$ $\frac{1}{\tilde{S}}$ be a Zariski open set on which $f_{\tilde{S}}$ is smooth and projective. Put

$$
H^3_{\mathcal{M}}(X_{\widetilde{S}},\mathbb{Q}(2))_0 := \text{Ker}[H^3_{\mathcal{M}}(X_{\widetilde{S}},\mathbb{Q}(2)) \longrightarrow H^3_{\mathcal{M}}(f_{\widetilde{S}}^{-1}(U_{\widetilde{S}}),\mathbb{Q}(2))]
$$

and $(R^2g_*\mathbb{Q}(2))_0 := \text{Ker}[R^2g_*\mathbb{Q}(2) \to p_*(R^2(f_{\widetilde{S}})_*\mathbb{Q}(2)|_{U_{\widetilde{S}}})]$. Then the regulator was indecade a mass lator map induces a map

$$
H^3_{\mathscr{M}}(X_{\widetilde{S}},\mathbb{Q}(2))_0 \longrightarrow \text{Ext}^1_{\text{VMHdR}(\widetilde{S})}(\mathbb{Q}, (R^2g_*\mathbb{Q}(2))_0).
$$

Recall from [\(3.8\)](#page-6-2) that there is a canonical surjective map $(R^2 g_* \mathbb{Q}(2))_0 \rightarrow$ $h^*W_2\mathscr{H}(2)$. We thus have a composition

$$
reg_0: H^3_{\mathcal{M}}(X_{\widetilde{S}}, \mathbb{Q}(2))_0 \longrightarrow \text{Ext}^1_{\text{VMHdR}(\widetilde{S})}(\mathbb{Q}, h^*W_2\mathcal{H}(2)) \longrightarrow \Gamma(\widetilde{S}^{an}, h^*\mathcal{J})
$$

of the maps. The compatibility with (3.10) is given by the commutate diagram

(3.11)
$$
H^3_{\mathcal{M}, D_{\widetilde{S}}}(X_{\widetilde{S}}, \mathbb{Q}(2)) \longrightarrow h^*C(e) \otimes \mathbb{Q}(1)
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
H^3_{\mathcal{M}}(X_{\widetilde{S}}, \mathbb{Q}(2))_0 \xrightarrow{\text{reg}_0} \Gamma(\widetilde{S}^{an}, h^* \mathcal{J})
$$

where $D_{\widetilde{S}} := X_{\widetilde{S}} \setminus U_{\widetilde{S}}$.

3.5 Regulator formula for HG fibrations of Gauss type

One of the main results in [\[3\]](#page-17-2) (which we call regulator formula) is an explicit description of the map ρ in [\(3.10\)](#page-9-1). Here we apply [\[3,](#page-17-2) Theorem 5.9] $(=a$ precise version of regulator formula) to the case that f is a HG fibration of Gauss type (see Definition [3.2\)](#page-4-0).

Let $f: X \to \mathbb{P}^1$ be a HG fibration of Gauss type with multiplication by $(R_0 := \mathbb{Q}[\mu_N], e_0)$ as in Definition [3.2.](#page-4-0) Let $\chi : E_0 \to \overline{\mathbb{Q}}$ be a homomorphism such that $\sigma(\zeta) = \zeta^{-n}$. Recall from Section [3.2](#page-4-1) that $F^1 H^1_{\text{dR}}(X_t)(\chi)$ is onedimensional and spanned by a 1-form

$$
\omega_n := \frac{x^{a_n}(1-x)^{b_n}(1-tx)^{c_n}}{y^n} dx,
$$

$$
a_n := \left\lfloor \frac{an}{N} \right\rfloor, \qquad b_n := \left\lfloor \frac{bn}{N} \right\rfloor, \qquad c_n := \left\lfloor \frac{Nn - bn}{N} \right\rfloor = n - b_n - 1,
$$

where $n \in \{1, 2, \ldots, N - 1\}$ such that $\chi(\zeta) = \zeta^{-n}$ for $\forall \zeta \in \mu_N$.

LEMMA 3.6. Let D_0, D_1 be the reduced singular fibers over $t = 0, 1$. We assume that $D_0 + D_1$ is a normal crossing divisor (abbreviated NCD). Then $t\omega_n \in \Gamma(\mathbb{P}^1 \setminus {\{\infty\}}, f_* \Omega^1_{X/\mathbb{P}^1}(\log D_0 + D_1)).$

Proof. Put $S = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and $U = f^{-1}(S)$. Let $\mathcal{V} := H^1_{\text{dR}}(U/S)$ be the bundle and $\nabla: \mathscr{V} \to \Omega_S^1 \otimes \mathscr{V}$ the Gauss–Manin connection. Let D_{∞} be the reduced singular fibers over $t = \infty$ and assume that it is a NCD. Put $T := \{0, 1, \infty\}$. Recall that the sheaf $\Omega^1_{X/\mathbb{P}^1}(\log D)$ $(D := D_0 + D_1 + D_\infty)$ is defined by the exact sequence

$$
0 \longrightarrow f^*\Omega^1_{\mathbb{P}^1}(\log T) \longrightarrow \Omega^1_X(\log D) \longrightarrow \Omega^1_{X/\mathbb{P}^1}(\log D) \longrightarrow 0.
$$

Let \mathcal{V}_e be Deligne's canonical extension over \mathbb{P}^1 . This is characterized as the subbundle $\mathscr{V}_e \subset j_* \mathscr{V}$ $(j : S \hookrightarrow \mathbb{P}^1)$ which satisfies

- ∇ has at most log poles, $\nabla : \mathscr{V}_e \to \Omega_{\mathbb{P}^1}^1(\log(0 + 1 + \infty)) \otimes \mathscr{V}_e$,
- The eigenvalues of residue Res(∇) at $t = 0, 1, \infty$ belong to [0, 1).

Then there is an isomorphism

$$
\mathscr{V}_e \cong R^1f_*\Omega^{\bullet}_{X/\mathbb{P}^1}(\log D)
$$

[\[12,](#page-17-10) 2.20] and $F^1 \mathscr{V}_e := \mathscr{V}_e \cap j_* F^1 \mathscr{V} \cong f_* \Omega^1_{X/\mathbb{P}^1}(\log D)$ (loc. cit. 4.20 (ii)). Hence the desired assertion is equivalent to

(3.12)
$$
t\omega_n \in \Gamma(\mathbb{P}^1 \setminus {\{\infty\}}, \mathscr{V}_e).
$$

To show this, we give a local frame of \mathcal{V}_e at $t = 0, 1$ explicitly. Let

$$
\eta_n := \frac{x^{a_n}(1-x)^{b_n+1}(1-tx)^{c_n}}{y^n} dx,
$$

and put

$$
\beta_1^{\chi} := \left\{ \frac{-an}{N} \right\}, \qquad \beta_2^{\chi} := \left\{ \frac{-bn}{N} \right\}.
$$

Recall from [\(3.2\)](#page-5-0) a homology cycle $\delta := (1 - \sigma^{d_1})(1 - \sigma^{d_2})u \in H_1(X_t, \mathbb{Z})$. Then

$$
(3.13)\quad \int_{\delta} \omega_n = (1 - \zeta^{-nd_1})(1 - \zeta^{-nd_2}) B(\beta_1^{\chi}, \beta_2^{\chi})_2 F_1(\beta_1^{\chi}, \beta_2^{\chi}, \beta_1^{\chi} + \beta_2^{\chi}; t),
$$

$$
\begin{aligned} \text{(3.14)}\\ \int_{\delta} \eta_n &= (1 - \zeta^{-nd_1})(1 - \zeta^{-nd_2})B(\beta_1^{\chi}, \beta_2^{\chi} + 1)_2 F_1(\beta_1^{\chi}, \beta_2^{\chi}, 1 + \beta_1^{\chi} + \beta_2^{\chi}; t). \end{aligned}
$$

This shows that ω_n and η_n are basis of the χ -part $\mathscr{V}(\chi)$ of the bundle (over a Zariski open set of $\mathbb{P}^1 \setminus \{0, 1, \infty\}$. Denote by $\mathcal{V}(\chi)^*$ the dual connection, and by $\{\omega_n^*, \eta_n^*\}$ the dual basis. Then

$$
\left(\int_{\delta} \omega_n\right) \omega_n^* + \left(\int_{\delta} \eta_n\right) \eta_n^*
$$

is annihilated by the dual connection, and hence (3.15)

$$
d\left(\int_{\delta} \omega_n\right) \omega_n^* + d\left(\int_{\delta} \eta_n\right) \eta_n^* + \left(\int_{\delta} \omega_n\right) \nabla(\omega_n^*) + \left(\int_{\delta} \eta_n\right) \nabla(\eta_n^*) = 0.
$$

Now (3.13) – (3.15) together with the formulas

$$
(1-t)\frac{d}{dt}{}_{2}F_{1}(a,b,a+b;t) = \frac{ab}{a+b}{}_{2}F_{1}(a,b,a+b+1;t),
$$

$$
t\frac{d}{dt} {}_{2}F_{1}(a, b, a+b+1; t)
$$

= $(a+b)({}_{2}F_{1}(a, b, a+b; t) - {}_{2}F_{1}(a, b, a+b+1; t))$

imply

$$
(\nabla(\omega_n^*), \nabla(\eta_n^*)) = dt \otimes (\omega_n^*, \eta_n^*) \begin{pmatrix} 0 & -\beta_1^{\chi}/(1-t) \\ -\beta_2^{\chi}/t & (\beta_1^{\chi} + \beta_2^{\chi})/t \end{pmatrix}
$$

$$
\iff (\nabla(\omega_n), \nabla(\eta_n)) = dt \otimes (\omega_n, \eta_n) \begin{pmatrix} 0 & \beta_2^{\chi}/t \\ \beta_1^{\chi}/(1-t) & -(\beta_1^{\chi} + \beta_2^{\chi})/t \end{pmatrix}.
$$

Then it is an elementary linear algebra to compute local frames of \mathcal{V}_e :

$$
\mathscr{V}_e(\chi)|_{t=0} = \begin{cases} \langle \omega_n, t(\beta_2^{\chi}\omega_n + (\beta_1^{\chi} + \beta_1^{\chi})\eta_n) \rangle & \beta_1^{\chi} + \beta_2^{\chi} \leq 1, \\ \langle t\omega_n, (\beta_1^{\chi} + \beta_2^{\chi} - 1)\omega_n + t\beta_1^{\chi}\eta_n \rangle & \beta_1^{\chi} + \beta_2^{\chi} > 1, \\ \mathscr{V}_e(\chi)|_{t=1} = \langle \omega_n, \eta_n \rangle. \end{cases}
$$

Now [\(3.12\)](#page-11-0) is immediate.

Let $e_0: \mu_N \to E_0^{\times}$ be an injective homomorphism. Then the condition in Lemma [3.1](#page-4-2) is satisfied. Let $e: R := \mathbb{Q}[\mu_l, \mu_N] \to E$ be a projection such that $\text{Ker}(e) \supset \text{Ker}(e_0)$. Let $\chi : R \to \overline{\mathbb{Q}}$ be a homomorphism factoring through e. Fix integers k, n such that

 \Box

$$
\chi(\zeta_1, \zeta_2) = \zeta_1^k \zeta_2^n, \quad \forall (\zeta_1, \zeta_2) \in \mu_l \times \mu_N.
$$

Note $gcd(n, N) = 1$ as $e_0: \mu_N \to E_0^{\times}$ is injective. Let (3.16)

$$
\beta_1^{\chi} := \left\{ \frac{-na}{N} \right\}, \qquad \beta_2^{\chi} := \left\{ \frac{-nb}{N} \right\}, \qquad \alpha_1^{\chi} := 0, \qquad \alpha_2^{\chi} := 1 - \beta_1^{\chi} - \beta_2^{\chi}
$$

which do not depend on the choice of n. Then $e^{2\pi i \alpha_j^{\chi}}$ (resp. $e^{2\pi i \beta_j^{\chi}}$) are eigenvalues of the local monodromy T_0 at $t = 0$ (resp. T_∞ at $t = \infty$) on $R^1f_*\mathbb{C}(\chi) \cong \mathbb{C}^2$ (see [\(3.5\)](#page-5-1)). The relative 1-form $\omega := t\omega_n$ satisfies the conditions $(P1)$, $(P2)$ in $[3, Section 4.5]$:

(P1) $\int_{\gamma_t} \omega(\gamma_t \in H_1(X_t))$ is spanned by $t_2F_1(\beta_1^X)$ $\beta_1^{\chi}, \beta_2^{\chi}, 1; 1-t$ and $t_2 \vec{F_1}(\beta_1^{\chi}$ $\beta_1^{\chi}, \beta_2^{\chi}, \beta_1^{\chi} + \beta_2^{\chi}$ 2^{χ} ; t). (This follows from (3.4) .) (P2) $\omega \in \Gamma(\mathbb{P}^1 \setminus {\{\infty\}}, f_* \Omega^1_{X/\mathbb{P}^1}(\log D))$. (This is Lemma [3.6.](#page-11-1))

We thus can apply the regulator formula [\[3,](#page-17-2) Theorem 5.9]. In our particular case, it is stated as follows (the notation is slightly changed for the use in below).

THEOREM 3.7. Let e_0, e, χ be as above, and let α_i^{χ} $\alpha_i^{\chi}, \beta_j^{\chi}$ j^{χ}_{j} be as in [\(3.16\)](#page-13-0). Assume that k/l , $k/l - \beta_1^{\chi}$ $\beta_1^{\chi}, k/l - \beta_2^{\chi}$ $\beta_2^{\chi}, k/l - \beta_1^{\chi} - \beta_2^{\chi}$ $P_2^{\chi} \notin \mathbb{Z}$. Put

$$
\mathscr{F}_1(\lambda) := (1 - \lambda)^{k/l - 1} \; {}_3F_2\left(\frac{1, 1, 1 - k/l}{2 - \beta_1^{\chi}, 2 - \beta_2^{\chi}}; (1 - \lambda)^{-1}\right),
$$

$$
\mathscr{F}_2(\lambda) := (1 - \lambda)^{k/l - 1} \; {}_3F_2\left(\frac{1, 1, 2 - k/l}{2 - \beta_1^{\chi}, 2 - \beta_2^{\chi}}; (1 - \lambda)^{-1}\right).
$$

Let $\rho({}^t\chi)$ be the ${}^t\chi$ -part of the map ρ in [\(3.10\)](#page-9-1). Let

$$
\rho({}^t\chi)=(\phi_1(\lambda),\phi_2(\lambda))\in (\mathscr{O}^{an})^{\oplus 2}\cong \mathscr{O}^{an}\otimes W_2\mathscr{H}_{\mathrm{dR}}({}^t\chi)
$$

be a local lifting where the above isomorphism is with respect to $\overline{\mathbb{Q}}$ -frame of $W_2\mathscr{H}_{\text{dR}}({}^t\chi)$. Define rational functions $E_i^{(r)} = E_i^{(r)}$ $j_i^{(r)}(\lambda) \in \mathbb{Q}(\lambda)$ for $r \in \mathbb{Z}_{\geqslant -1}$ in the following way. Write $a := 2 - \beta_1^{\chi}$ $b := 2 - \beta_2^{\chi}$ B_2^{χ} . Put

$$
A(s) := \frac{s(a+b+2s-3-s(1-\lambda)^{-1})}{(a+s-1)(b+s-1)},
$$

$$
B(s) := \frac{s(1-s)(1-(1-\lambda)^{-1})}{(a+s-1)(b+s-1)}.
$$

Define $C_i(s)$ and $D_i(s)$ by

$$
\begin{pmatrix} C_{i+1}(s) \\ D_{i+1}(s) \end{pmatrix} = \begin{pmatrix} A(s) & 1 \\ B(s) & 0 \end{pmatrix} \begin{pmatrix} C_i(s+1) \\ D_i(s+1) \end{pmatrix}, \qquad \begin{pmatrix} C_{-1}(s) \\ D_{-1}(s) \end{pmatrix} := \begin{pmatrix} 0 \\ 1 \end{pmatrix},
$$

and define $E_i^{(r)}$ $\int_i^{(r)} by$

(3.17)
$$
E_1^{(r)} = \lambda C_r(k/l) + (1 - \lambda)C_{r+1}(k/l),
$$

$$
E_2^{(r)} = \lambda D_r(k/l) + (1 - \lambda)D_{r+1}(k/l).
$$

Then for infinitely many integers $r > 0$, we have

$$
\phi_1(\lambda) \equiv C_1(1-\lambda)^r [E_1^{(r)}(\lambda)\mathscr{F}_1(\lambda) + E_2^{(r)}(\lambda)\mathscr{F}_2(\lambda)],
$$

$$
\phi_2(\lambda) \equiv C_2(1-\lambda)^{r-1} [E_1^{(r-1)}(\lambda)\mathscr{F}_1(\lambda) + E_2^{(r-1)}(\lambda)\mathscr{F}_2(\lambda)]
$$

modulo $\overline{\mathbb{Q}(\lambda)}$ with some $C_1, C_2 \in \overline{\mathbb{Q}}^{\times}$.

We note that (N, l, k, n, a, b) in Theorem [3.7](#page-14-0) can run over the set of all 6-tuples of integers satisfying

- $0 < a, b < N$, $gcd(N, a, b) = 1$ and $gcd(n, N) = 1$,
- $k/l, k/l \beta_1^{\chi}$ $\beta_1^{\chi}, k/l - \beta_2^{\chi}$ $\beta_2^{\chi}, k/l - \beta_1^{\chi} - \beta_2^{\chi}$ $\frac{\partial X}{\partial x} \notin \mathbb{Z}$ (see [\(3.16\)](#page-13-0) for definition of β_j^X $j^{\chi}).$

§4. Proof of main theorem

We are now in a position to prove Theorem [2.1](#page-2-2) (log formula). There are the following formulas

$$
(b_1 - 1)_3 F_2 \begin{pmatrix} a_1, a_2, a_3 \\ b_1 - 1, b_2 \end{pmatrix} = \left(b_1 - 1 + x \frac{d}{dx} \right) {}_3F_2 \begin{pmatrix} a_1, a_2, a_3 \\ b_1, b_2 \end{pmatrix}; x,
$$

$$
a_1 \cdot {}_3F_2 \begin{pmatrix} a_1 + 1, a_2, a_3 \\ b_1, b_2 \end{pmatrix} = \left(a_1 + x \frac{d}{dx} \right) {}_3F_2 \begin{pmatrix} a_1, a_2, a_3 \\ b_1, b_2 \end{pmatrix}; x,
$$

$$
(a_2 - b_1)(a_1 - b_1)(a_3 - b_1)_3 F_2\begin{pmatrix} a_1, a_2, a_3 \\ b_1 + 1, b_2 \end{pmatrix} = \theta_1 \begin{pmatrix} a_1, a_2, a_3 \\ b_1, b_2 \end{pmatrix}; x
$$

$$
(a_1 - b_1)(a_1 - b_2)_3 F_2\begin{pmatrix} a_1 - 1, a_2, a_3 \\ b_1, b_2 \end{pmatrix}; x = \theta_2 \begin{pmatrix} a_1, a_2, a_3 \\ b_1, b_2 \end{pmatrix};
$$

where

$$
\theta_1 := -a_1 a_2 a_3 + (a_2 - b_1)(a_1 - b_1)(a_3 - b_1)
$$

+ $b_1 (b_2 + (b_1 - a_1 - a_2 - a_3 - 1)x) \frac{d}{dx} + b_1 (x - x^2) \frac{d^2}{dx^2}$

$$
\theta_2 := (a_1 - b_1)(a_1 - b_2) - a_2 a_3 x
$$

+ $((b_1 + b_2 - a_1) - (a_2 + a_3 + 1)x)x \frac{d}{dx} + (1 - x)x^2 \frac{d^2}{dx^2}.$

Therefore if one can prove the log formula for ${}_{3}F_2\left(\begin{smallmatrix}1,1,q\\a,\;b\end{smallmatrix};x\right)$ then one immediately has the log formula for ${}_{3}F_2\left({\begin{smallmatrix} n_1,n_2,q+n_3\ n+n_4,\ b+n_1,\end{smallmatrix}} \right)$ $\binom{n_1, n_2, q+n_3}{a+n_4, b+n_5}$; x) for arbitrary integers $n_1, n_2 > 0$ and $n_3, n_4, n_5 \in \mathbb{Z}$.

We keep the setting and the notation in Section [3.5.](#page-11-2) Suppose that

(4.1)
$$
1 = 2\{-sk/l\} + \sum_{i=1}^{2} \{s\beta_2^{\chi}\} - \{s(\beta_i^{\chi} - k/l)\}, \quad \forall s \in \hat{\mathbb{Z}}^{\times}.
$$

Then it follows from Corollary [3.5](#page-8-0) that $W_2\mathscr{H}(e)$ is a Tate HdR structure of type $(1, 1)$. Let us look at the map $\rho({}^t\chi)$ in Theorem [3.7.](#page-14-0) This turns out to be the Beilinson regulator by the diagram (3.11) . Since $W_2\mathscr{H}(e)$ is Tate, it is generated by the divisor classes of the geometric generic fiber $X_{\overline{n}}$ of $f_{\tilde{S}}$. This implies that the image of reg₀ in [\(3.11\)](#page-10-0) is generated by the images of $H^1_{\mathcal{M}}(\widetilde{D}_i,\mathbb{Q}(1))$ where D_i runs over the generators of the Neron–Severi group $NS(X_{\overline{\eta}}) \otimes \mathbb{Q}$ and $\widetilde{D}_i \to D_i$ is the desingularization. As is well known,

 $H^1_{\mathscr{M}}(\widetilde{D}_i,\mathbb{Q}(1)) \cong \overline{\eta}^{\times} \otimes \mathbb{Q}$ as \widetilde{D}_i is smooth projective, and the Beilinson regulator on it is given by the logarithmic function. Therefore we have

(4.2)
$$
\phi_1(\lambda), \ \phi_2(\lambda) \in \overline{\mathbb{Q}(\lambda)} + \overline{\mathbb{Q}(\lambda)} \log \overline{\mathbb{Q}(\lambda)}^{\times}.
$$

We now apply Theorem [3.7.](#page-14-0) If one can show that

$$
\begin{vmatrix} E_1^{(r)} & E_2^{(r)} \\ E_1^{(r-1)} & E_2^{(r-1)} \end{vmatrix} \neq 0
$$

for almost all $r > 0$, then we have $\mathscr{F}_i(\lambda) \in \overline{\mathbb{Q}(\lambda)} + \overline{\mathbb{Q}(\lambda)} \log \overline{\mathbb{Q}(\lambda)}^{\times}$, which would finish the proof of Theorem [2.1.](#page-2-2) To do this, recall (3.17) . Letting

$$
E_1^{(r)}(s) := \lambda C_r(s) + (1 - \lambda)C_{r+1}(s),
$$

\n
$$
E_2^{(r)}(s) := \lambda D_r(s) + (1 - \lambda)D_{r+1}(s),
$$

we want to show

(4.3)
$$
\begin{vmatrix} E_1^{(r)}(k/l) & E_2^{(r)}(k/l) \\ E_1^{(r-1)}(k/l) & E_2^{(r-1)}(k/l) \end{vmatrix} \neq 0
$$

for almost all $r > 0$. Since

$$
\begin{pmatrix} E_1^{(r+1)}(s) & E_1^{(r)}(s) \\ E_2^{(r+1)}(s) & E_2^{(r)}(s) \end{pmatrix} = \begin{pmatrix} A(s) & 1 \\ B(s) & 0 \end{pmatrix} \begin{pmatrix} E_1^{(r)}(s+1) & E_1^{(r-1)}(s+1) \\ E_2^{(r)}(s+1) & E_2^{(r-1)}(s+1) \end{pmatrix}
$$

[\(4.3\)](#page-16-0) is reduced to showing that

$$
\begin{vmatrix} E_1^{(0)}(k/l+r) & E_2^{(0)}(k/l+r) \\ E_1^{(-1)}(k/l+r) & E_2^{(-1)}(k/l+r) \end{vmatrix} \neq 0
$$

for all integers r . However, this follows from

$$
\begin{vmatrix} E_1^{(0)}(s) & E_2^{(0)}(s) \\ E_1^{(-1)}(s) & E_2^{(-1)}(s) \end{vmatrix} = \begin{vmatrix} \lambda + (1 - \lambda)A(s) & (1 - \lambda)B(s) \\ 1 - \lambda & \lambda \end{vmatrix}
$$

$$
= \lambda \frac{(a - 1)(b - 1)\lambda + s(a + b - 2)}{(s + a - 1)(s + b - 1)},
$$

$$
(a := 2 - \beta_1^{\chi}, b := 2 - \beta_2^{\chi})
$$

and the fact β_i^{χ} $i \notin \mathbb{Z}$ (see [\(3.16\)](#page-13-0)) and $k/l - \beta_i^{\chi}$ $e_i^{\chi} \notin \mathbb{Z}$ as is assumed. This completes the proof of Theorem [2.1.](#page-2-2)

Acknowledgment. This work is supported by JSPS grant-in-aid for Scientific Research: 15K04769 and 25400007.

REFERENCES

- [1] N. Archinard, Hypergeometric abelian varieties, Canad. J. Math. 55 (2003), 897–932.
- [2] M. Asakura and J. Fresán, On the Gross–Deligne conjecture for variations of $Hodge$ de Rham structures, preprint.
- [3] M. Asakura and N. Otsubo, Regulators on K_1 of hypergeometric fibrations, to appear in the Proceedings of Conference "Arithmetic L-functions and Differential Geometric Methods (Regulators IV)", [arXiv:1709.04144.](http://www.arxiv.org/abs/1709.04144)
- [4] M. Asakura and N. Otsubo, *CM periods, CM regulators and hypergeometric func*tions, II, Math. Z. $289(3-4)$ (2018), 1325-1355.
- [5] M. Asakura, N. Otsubo and T. Terasoma, An algebro-geometric study of special values of hypergeometric functions ${}_3F_2$, Nagoya Math. J. 236 (2019), 47–62.
- [6] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics 32, Stechert-Hafner, Inc., New York, 1964.
- [7] F. Beukers and G. Heckman, Monodromy for the hypergeometric function n_1F_{n-1} , Invent. Math. 95(2) (1989), 325–354.
- [8] A. Erdélyi (eds), *Higher transcendental functions*, Vol. 1, McGrow-Hill, New York, 1953.
- [9] R. Fedorov, Variations of Hodge structures for hypergeometric differential operators and parabolic Higgs bundles, [arXiv:1505.01704.](http://www.arxiv.org/abs/1505.01704)
- [10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
- [11] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
- [12] J. Steenbrink, *Limits of Hodge structures*, Invent. Math. **31**(3) (1976), 229–257.

Masanori Asakura Department of Mathematics Hokkaido University Sapporo 060-0810 Japan

asakura@math.sci.hokudai.ac.jp

Noriyuki Otsubo

Department of Mathematics and Informatics Chiba University Chiba 263-8522 Japan otsubo@math.s.chiba-u.ac.jp