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A FUNCTIONAL LOGARITHMIC FORMULA FOR THE
HYPERGEOMETRIC FUNCTION 3F2

MASANORI ASAKURA and NORIYUKI OTSUBO

Dedicated to the 60th birthday of Professor Shuji Saito

Abstract. We give a sufficient condition for the hypergeometric function 3F2

to be a linear combination of the logarithm of algebraic functions.

§1. Introduction

For αi, βj ∈ C with βj 6∈ Z60, the generalized hypergeometric function is

defined by a power series expansion

pFp−1

(
α1, . . . , αp
β1, . . . , βp−1

; x

)
=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βp−1)n

xn

n!
,

where

(α)0 := 1, (α)n := α(α+ 1) · · · (α+ n− 1) for n> 1

denotes the Pochhammer symbol. When p= 2, this is called the Gauss

hypergeometric function. This has an analytic continuation to C, and

then becomes a multivalued function which is holomorphic on C \ {0, 1}.
A number of formulas have been discovered since 19th century (e.g.,

[10, Chapters 15, 16]), and they have been applied in various areas in

mathematics. At present, the theory of hypergeometric function is one of

the most important tools in mathematics.

In [5], we discussed the special values of 3F2

(
1,1,q
a,b ; x

)
at x= 1, and gave

a sufficient condition for it to be a Q-linear combination of logarithms of

algebraic numbers, namely

3F2

(
1, 1, q

a, b
; 1

)
∈Q + Q log Q×
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:=

{
a+

n∑
i=1

bi log ci

∣∣∣∣∣ a, bi, ci ∈Q, ci 6= 0, n ∈ Z>0

}
.

The goal of this paper is to give its functional version. To be precise, set

Q(x) + Q(x) log Q(x)
×

:=

{
f +

n∑
i=1

gi log hi

∣∣∣∣∣ f, gi, hi ∈Q(x), hi 6= 0, n ∈ Z>0

}

where Q(x) denotes the algebraic closure of the field of rational functions

Q(x). We say that the logarithmic formula holds for a function F (x) if it

belongs to the above set. The main theorem gives a sufficient condition on

(a, b, q) for 3F2

(
1,1,q
a,b ; x

)
to satisfy a logarithmic formula. Recall that two

proofs are presented in [5]. One of the proofs uses hypergeometric fibrations

and the other uses Fermat surfaces. In this paper we follow the method

of hypergeometric fibrations, while employing a new ingredient from [3]. It

seems impossible to prove the functional log formula using the method of

Fermat surfaces.

By developing the technique here, we can get explicit log formulas in some

cases. For example, let

e1(x) :=
1

2
+ x−1/3

(
−1

4
+
x

8
+

1

4

√
1− x

)1/3

+ x−1/3
(
−1

4
+
x

8
− 1

4

√
1− x

)1/3

e2(x) :=
1

2
+ e−2πi/3x−1/3

(
−1

4
+
x

8
+

1

4

√
1− x

)1/3

+ e2πi/3x−1/3
(
−1

4
+
x

8
− 1

4

√
1− x

)1/3

e3(x) :=
1

2
+ e2πi/3x−1/3

(
−1

4
+
x

8
+

1

4

√
1− x

)1/3

+ e−2πi/3x−1/3
(
−1

4
+
x

8
− 1

4

√
1− x

)1/3

p± = p±(x) :=

(
1±
√

1− x√
x

)2/3

, qj = qj(x) :=
1−
√

3x · ej(x)

1 +
√

3x · ej(x)
.
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Then

3F2

1, 1,
1

2
7

6
,

11

6

; x


=

5
√

3

36
x−1/2

[
(p+ + p−) log

(
q1
q2

)
+ (eπi/3p+ + e−πi/3p−) log

(
q2
q3

)]
.

However, there remain technical difficulties arising from algebraic cycles to

obtain explicit log formulas in more general cases.

§2. Main theorem

Let Ẑ = lim←−nZ/nZ be the completion, and Ẑ× = lim←−n(Z/nZ)× the group

of units. The ring Ẑ acts on the additive group Q/Z in a natural way, and

then it induces Ẑ× ∼= Aut(Q/Z). We denote by {x} := x− bxc the fractional

part of x ∈Q. The map {−} : Q→ [0, 1) factors through Q/Z, which we

denote by the same notation.

Theorem 2.1. (Logarithmic formula) Let q, a, b ∈Q satisfy the prop-

erty that none of q, a, b, q − a, q − b, q − a− b is an integer. Suppose

1 = {sa}+ {sb}+ 2{−sq} − {s(a− q)} − {s(b− q)}

(⇐⇒ min({sa}, {sb})< {sq}<max({sa}, {sb}))(2.1)

for ∀s ∈ Ẑ×. Then

3F2

(
n1, n2, q

a, b
; x

)
∈Q(x) + Q(x) log Q(x)

×

for any integers ni > 0.

As we shall see in Section 4, one can shift the indices ni, q, a, b by arbitrary

integers by applying differential operators. Thus it is enough to prove the

log formula for 3F2

(
1,1,q
a, b ; x

)
.

Recall the main theorem of [5] which asserts that if

(2.2) 2 = {sq}+ {s(a− q)}+ {s(b− q)}+ {s(q − a− b)}

for ∀s ∈ Ẑ×, then

3F2

(
1, 1, q

a, b
; 1

)
∈Q + Q log Q×
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as long as it converges (⇔ a+ b > q + 2). It is easy to see (2.1)⇒ (2.2) while

the converse is no longer true (e.g., (a, b, q) = (1/6, 1/4, 1/2)). Therefore

Theorem 2.1 does not imply all of the main theorem of [5].

Conjecture 2.2. (Cf. [5, Conjecture 5.2]) The converse of Theo-

rem 2.1 is true.

In the seminal paper [7], Beukers and Heckman gave a necessary and

sufficient condition for pFp−1 to be an algebraic function, or equivalently for

its monodromy group to be finite. Let ai, bj ∈Q. Then their theorem states

that, under the condition that {ai} 6= {bj} and {ai} 6= 0,

pFp−1

(
a1, . . . , ap
b1, . . . , bp−1

; x

)
∈Q(x)

if and only if ({sa1}, . . . , {sap}) and (0, {sb1}, . . . , {sbp−1}) interlace for

all s ∈ Ẑ× [7, Theorem 4.8]. Here we say that two sets (α1, . . . , αp) and

(β1, . . . , βp) interlace if and only if

α1 < β1 < · · ·< αp < βp or β1 < α1 < · · ·< βp < αp

when ordering α1 < · · ·< αp and β1 < · · ·< βp. In this terminology, (2.1)

is translated into that (0, {sq}) and ({sa}, {sb}) interlace. Our main

Theorem 2.1 is not directly related to their theorem, while they are obviously

comparable.

§3. Hypergeometric fibrations

We mean by a fibration over a ring k a projective flat morphism of

quasiprojective smooth k-schemes.

3.1 Definition

Let f :X → P1 be a fibration over a field k. For simplicity we assume

k = k and fix an embedding k ⊂ C. Let R be a finite-dimensional semisimple

commutative Q-algebra. We mean by a multiplication on R1f∗Q by R

a homomorphism ρ :R→ EndVHS(R1f∗Q|U ) of rings where U ⊂ P1 is the

maximal Zariski open set such that f is smooth over U . Let e :R→ E be

a projection onto a number field E. We say f is a hypergeometric fibration

with multiplication by (R, e) (HG fibration) if the following conditions hold.

We fix an inhomogeneous coordinate t ∈ P1.
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(a) f is smooth over P1 \ {0, 1,∞},
(b) dimE H

1(Xt,Q)(e) = 2 where Xt = f−1(t) is a general fiber and we

write V (e) := E ⊗e,R V the e-part,

(c) Let Pic0f → P1 \ {0, 1,∞} be the Picard fibration whose general fiber is

the Picard variety Pic0(f−1(t)), and let Pic0f (e) be the component asso-

ciated to the e-part R1f∗Q(e) (this is well defined up to isogeny). Then

Pic0f (e)→ P1 \ {0, 1,∞} has totally degenerate semistable reduction at

t= 1.

The last condition (c) is equivalent to saying that the local monodromy

T on H1(Xt,Q)(e) at t= 1 is unipotent and the rank of log monodromy

N := log(T ) is maximal, namely rank(N) = 1
2 dimQ H

1(Xt,Q)(e) (= [E : Q]

by condition (b)).

3.2 HG fibration of Gauss type

Let f :X → P1 be a fibration over Q whose general fiber Xt = f−1(t) is

the nonsingular projective model of the affine curve

(3.1) yN = xa(1− x)b(1− tx)N−b, 0< a, b < N, gcd(N, a, b) = 1.

f is smooth outside {0, 1,∞} so that the condition (a) is satisfied. The

group µN of Nth roots of unity acts on f−1(t) by (x, y, t) 7→ (x, ζy, t) for

ζ ∈ µN , which gives rise to a multiplication on R1f∗Q by the group ring

R0 := Q[µN ].

Lemma 3.1. [4, Proposition 3.1] Let e0 :R0 := Q[µN ]→ E0 be a projec-

tion onto a number field E0. Then (R0, e0) satisfies the conditions (b) and

(c) if and only if ad 6≡ 0 and bd 6≡ 0 modulo N where d := ]Ker[µN →R×0
e0→

E×0 ].

Definition 3.2. We say that f is a HG fibration of Gauss type with

multiplication by (Q[µN ], e) if ad 6≡ 0 and bd 6≡ 0 modulo N .

Let χ :R0→Q be a homomorphism of Q-algebras factoring through e.

Let n be an integer such that χ(ζ) = ζ−n for all ζ ∈ µN . Note gcd(n, N) = 1.

By [1, p. 917, (13)], H1
dR(Xt)(χ) ∩H1,0 is spanned by the 1-form

ωn :=
xan(1− x)bn(1− tx)cn

yn
dx,

an :=
⌊an
N

⌋
, bn :=

⌊
bn

N

⌋
, cn :=

⌊
Nn− bn

N

⌋
= n− bn − 1.
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Let P1 (resp. P2) be a point of Xt above x= 0 (resp. x= 1). There are

gcd(N, a)-points above x= 0 (resp. gcd(N, b)-points above x= 1). Let u

be a path from P1 to P2 above the real interval x ∈ [0, 1]. It defines a

homology cycle u ∈H1(Xt, {P1, P2}; Z) with boundary. Put d1 := gcd(N, a),

d2 := gcd(N, b). Let σ ∈ µN be an automorphism. Since σd1P1 = P1 and

σd2P2 = P2, one has a homology cycle

(3.2) δ(σ) := (1− σd1)(1− σd2)u ∈H1(Xt, Z).

By an integral expression of Gauss hypergeometric functions (e.g., [6,

p. 4, 1.5] or [11, p. 20, (1.6.6)]), one has∫
δ(σ)

ωn = (1− ζ−nd1)(1− ζ−nd2)

∫ 1

0
ωn(3.3)

= (1− ζ−nd1)(1− ζ−nd2)B(αn, βn)2F1(αn, βn, αn + βn; t),(3.4)

where B(α, β) := Γ(α)Γ(β)/Γ(α+ β) is the beta function, ζ is defined by

σ(y) = ζy and we put

αn :=

{
−an
N

}
, βn :=

{
−bn
N

}
.

This shows that the monodromy on the 2-dimensional H1(Xt, C)(χ) is

isomorphic to the monodromy of the hypergeometric equation

(Dt(Dt + αn + βn − 1)− t(Dt + αn)(Dt + βn))(y) = 0, Dt := t
d

dt

with the Riemann scheme

(3.5)


t= 0 t= 1 t=∞

0 0 αn
1− αn − βn 0 βn


In particular, the monodromy is irreducible as αn, βn 6∈ Z.

3.3 Hodge numbers

Let f :X → P1 be a HG fibration with multiplication by (R0, e0).

Following [3, Section 4.1], we consider motivic sheaves M and H which

are defined in the following way. Let S := A1
Q \ {0, 1} be defined over Q

with coordinate λ. Let P1
S := P1 × S and denote the coordinates by (t, λ).
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Put P1
S ⊃U := (A1

Q \ {0, 1} × S) \∆ where ∆ is the diagonal subscheme.

Let l > 1 be an integer. Let π : P1
S → P1

S be a morphism over S given by

(t, λ) 7→ (λ− tl, λ). Then we define

M := π∗Q⊗ pr∗1R
1f∗Q|U , pr1 : P1

S = P1 × S→ P1

a variation of Hodge–de Rham structures (VHdR) on U and

H :=R1pr2∗M , pr2 : U → S

a variation of mixed Hodge–de Rham structures (VMHdR) on S, where

the terminology is as in [3, Section 2.1] or [4, Section 2.1]. For the

reader’s convenience, we give a description of the stalk Ha = H |{a} and

Ma = M |pr−1
2 (a) = M |A1\{0,1,a} at a ∈ S is given in the following way. Let

πa : P1→ P1 be the map given by t 7→ a− tl. Let

Xa

fa   

i // X ′a

��

//

�

X

f
��

P1
πa // P1

be a Cartesian diagram, and i a desingularization along the singular fibers.

Put Ua := π−1a (A1 \ {0, 1, a}). Then

Ma = πa∗Q⊗R1f∗Q|A1\{0,1,a} = πa∗π
∗
aR

1f∗Q|A1\{0,1,a}

∼= πa∗R
1fa∗Q|A1\{0,1,a},

Ha = H1(A1 \ {0, 1, a},Ma)

∼= H1(Ua, R
1fa∗Q)⊂H2(f−1a (Ua),Q).(3.6)

The weights of H are at most 2, 3, 4, and hence there is an exact sequence

(3.7) 0−→W2H −→H −→H /W2 −→ 0

of VMHdR structures on S. By (3.6), there is a canonical surjective map

(3.8) H2(Xa,Q)0 −→W2Ha

where we put H2(Xa,Q)0 := Ker[H2(Xa,Q)→H2(f−1a (t),Q)], t ∈ Ua.
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Let µl be the group of lth roots of unity which acts on π∗Q in a

natural way. Then M has multiplication by the group ring R :=R0[µl]. Let

e :R→ E be a projection onto a number field E such that Ker(e)⊃Ker(e0).

There is a unique embedding E0 ↪→ E making the diagram

R0

��

e0 // E0

��
R

e // E

commutative.

For χ :R→Q factoring through e, we denote by V (χ) the χ-part which

is defined to be the subspace on which r ∈R acts as multiplication by χ(r).

Theorem 3.3. Let Tp denote the local monodromy on R1f∗Q(χ) at

t= p. Let αχj (resp. βχj ) for j = 1, 2 be rational numbers such that e2πiα
χ
j

(resp. e2πiβ
χ
j ) are eigenvalues of T0 (resp. T∞). Let k be an integer such that

χ(ζl) = ζkl for ζl ∈ µl. Suppose that k/l,−k/l + βχj 6∈ Z and αχ1 ∈ Z. Write

hp,2−pχ := dimQ GrpFW2H (χ). Put

dχ := 2{−k/l}+
2∑
i=1

{βχi } − {β
χ
i − k/l}.

Then

(h2,0χ , h1,1χ , h0,2χ ) =


(1, 1, 0) if dχ = 2,

(0, 2, 0) if dχ = 1,

(0, 1, 1) if dχ = 0.

Note that dχ takes values only in 0, 1 or 2. Indeed

dχ =

δ1︷ ︸︸ ︷
{βχ1 }+ {−k/l} − {βχ1 − k/l}+

δ2︷ ︸︸ ︷
{βχ2 }+ {−k/l} − {βχ2 − k/l}

and each δi is either 0 or 1.

Proof. We first note that dimE W2H (e) = 2 [3, Section 4.3]. We employ

two results from [2] and [9], respectively. First of all, it follows from

[2, Theorem 4.2] that one has the Hodge numbers of the determinant
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D := detEW2H (e) =
∧2
E W2H (e). The result is

(D4,0
χ , D3,1

χ , D2,2
χ , D1,3

χ , D0,4
χ ) =


(0, 1, 0, 0, 0) if dχ = 2,

(0, 0, 1, 0, 0) if dχ = 1,

(0, 0, 0, 1, 0) if dχ = 0

where we put Dp,4−p
χ := dim GrpFD(χ). Since Dp,4−p

χ = 1⇔ 2h2,0χ + h1,1χ = p,

this implies

(h2,0χ , h1,1χ , h0,2χ ) =


(1, 1, 0) if dχ = 2,

(0, 2, 0) or (1, 0, 1) if dχ = 1,

(0, 1, 1) if dχ = 0

which completes the proof in the case dχ 6= 1. Suppose dχ = 1. We want to

show that (h2,0χ , h1,1χ , h0,2χ ) = (1, 0, 1) cannot happen. By [3, Theorem 5.8],

the underlying connection of W2H (χ) is defined by the hypergeometric

differential operator as in loc. cit. One can apply the main theorem in

[9] and then the possible triplets of the Hodge numbers are at most

(2, 0, 0), (0, 2, 0), (0, 0, 2). In particular, the case (h2,0χ , h1,1χ , h0,2χ ) = (1, 0, 1)

is excluded. This completes the proof in case dχ = 1.

Remark 3.4. For the latter half of the proof of Theorem 3.3, there

is an alternative discussion without using the main theorem of [9]. Let π0 :

P1→ P1 be the map given by t 7→ −tl. Let M0 := π0∗Q⊗R1f∗Q be a VHdR

on P1 \ {0, 1,∞}. Put H0 :=H1(P1 \ {0, 1,∞},M0). Let ψλ=0 denote the

nearby cycle functor. Then one can construct an injection

E ∼=W2H0(e)
� � // ψλ=0W2H (e)

of mixed Hodge–de Rham structures. The cohomology group W2H0(e) is

studied in detail in [4]. In particular, if dχ = 1, then the Hodge type of

W2H0(χ) is (1, 1). Hence h1,1χ > 0 by the above injection, which excludes

the case (h2,0χ , h1,1χ , h0,2χ ) = (1, 0, 1).

Corollary 3.5. W2H (e) is a Tate VHdR of type (1, 1) if and only if

dχ = 1 for all χ :R→Q, equivalently

2{−sk0/l}+
∑2

i=1{sβ
χ0
i } − {s(β

χ0
i − k0/l)}= 1

⇐⇒ {sβχ0
1 }< {sk0/l}< {sβ

χ0
2 } or {sβχ0

2 }< {sk0/l}< {sβ
χ0
1 }

for ∀s ∈ Ẑ× where χ0 is a fixed one and βχ0
j , k0 are the rational numbers

arising from χ0.
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3.4 Beilinson regulator

Let ψt=1 be the nearby cycle functor along the function t− 1 on U , and

put

C := GrW2 ψt=1M ∼= π∗Q|{1}×S ⊗ (GrW2 ψt=1R
1f∗Q)

a VHdR on S. The condition (c) in Section 3.1 implies that the e-part C(e) is

of Hodge type (1, 1). Recall from [3, Proposition 4.2] that there is a natural

embedding

C(e)⊗Q(−1)−→H (e)/W2.

This gives a 1-extension

(3.9) 0 // W2H (e) // H ′(e) // C(e)⊗Q(−1) // 0

of VMHdR with multiplication by E which is induced from (3.7). Note

C(e) is one-dimensional over E and endowed with Hodge type (1, 1) by (c)

in Section 3.1.

In [3, Section 5] we discussed the extension data of (3.9). More precisely,

let Ozar be the Zariski sheaf of polynomial functions (with coefficients

in Q) on S = A1
Q \ {0, 1} with coordinate λ. Let Oan be the sheaf of

analytic functions on San = Can \ {0, 1}. Let a : San→ Szar be the canonical

morphism from the analytic site to the Zariski site. Set

J := Coker[a−1F 2W2HdR ⊕ ι(W2HB)→ Oan ⊗a−1Ozar a−1W2HdR]

a sheaf on the analytic site Can \ {0, 1} where ι : HB → a−1HdR is the

comparison map. Let h : S̃→ S be a generically finite and dominant map

such that l
√
λ− 1 ∈Q(S̃). Then h∗C(e) is a direct sum of copies of the

constant VHdR Q(−1). The connecting homomorphism arising from (3.9)

gives a map

h∗C(e)⊗Q(1)−→ Ext1VMHdR(Q, W2H (e)⊗Q(2))

to the Yoneda extension group of VMHdR’s on S where we simply write

h∗C(e)⊗Q(1) = Γ (S̃, h∗C(e)⊗Q(1)). Combining this with the Carlson

isomorphism (cf. [3, Proposition 2.1]), we have

(3.10) ρ : h∗C(e)⊗Q(1)−→ Γ (S̃an, h∗J (e)).

A down-to-earth description of ρ is the following. Let x ∈ h∗C(e)⊗Q(1). Let

edR,x ∈H ′(e)dR ⊗Q(2) and eB,x ∈H ′(e)B ⊗Q(2) be liftings of x. Then

ρ(x) =±(ι(eB,x)− edR,x) (see also [3, Section 5.2]).
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The map ρ agrees with the Beilinson regulator map on the motivic

cohomology supported on singular fibers up to sign in the following sense.

Let π̃ : P1
S̃

:= P1 ×Q S̃→ P1 be given by (s, λ′) 7→ h(λ′)− sl. Consider the

diagram

X
S̃

g

��

i //

f
S̃

##

P1
S̃
×P1 X //

��

X

f

��

S̃ P1
S̃

π̃ //
p

oo P1

with i desingularization and p the 2nd projection. Let

reg :H3
M (X

S̃
,Q(2))−→H3

D(X
S̃
,Q(2)) = Ext3MHM(X

S̃
)(Q,Q(2))

be the Beilinson regulator map where MHM(S̃) denotes the category of

mixed Hodge modules on S̃. There is a canonical surjective map

Ext3MHM(X
S̃
)(Q,Q(2))−→ Ext1

VMHdR(S̃)
(Q, R2g∗Q(2)).

Let U
S̃
⊂ P1

S̃
be a Zariski open set on which f

S̃
is smooth and projective.

Put

H3
M (X

S̃
,Q(2))0 := Ker[H3

M (X
S̃
,Q(2))−→H3

M (f−1
S̃

(U
S̃

),Q(2))]

and (R2g∗Q(2))0 := Ker[R2g∗Q(2)→ p∗(R
2(f

S̃
)∗Q(2)|U

S̃
)]. Then the regu-

lator map induces a map

H3
M (X

S̃
,Q(2))0 −→ Ext1

VMHdR(S̃)
(Q, (R2g∗Q(2))0).

Recall from (3.8) that there is a canonical surjective map (R2g∗Q(2))0→
h∗W2H (2). We thus have a composition

reg0 :H3
M (X

S̃
,Q(2))0 −→ Ext1

VMHdR(S̃)
(Q, h∗W2H (2))−→ Γ (S̃an, h∗J )

of the maps. The compatibility with (3.10) is given by the commutate

diagram

(3.11) H3
M ,D

S̃
(X

S̃
,Q(2)) //

��

h∗C(e)⊗Q(1)

ρ

��

H3
M (X

S̃
,Q(2))0

reg0 // Γ (S̃an, h∗J )

where D
S̃

:=X
S̃
\ U

S̃
.
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3.5 Regulator formula for HG fibrations of Gauss type

One of the main results in [3] (which we call regulator formula) is an

explicit description of the map ρ in (3.10). Here we apply [3, Theorem 5.9]

(=a precise version of regulator formula) to the case that f is a HG fibration

of Gauss type (see Definition 3.2).

Let f :X → P1 be a HG fibration of Gauss type with multiplication by

(R0 := Q[µN ], e0) as in Definition 3.2. Let χ : E0→Q be a homomorphism

such that σ(ζ) = ζ−n. Recall from Section 3.2 that F 1H1
dR(Xt)(χ) is one-

dimensional and spanned by a 1-form

ωn :=
xan(1− x)bn(1− tx)cn

yn
dx,

an :=
⌊an
N

⌋
, bn :=

⌊
bn

N

⌋
, cn :=

⌊
Nn− bn

N

⌋
= n− bn − 1,

where n ∈ {1, 2, . . . , N − 1} such that χ(ζ) = ζ−n for ∀ζ ∈ µN .

Lemma 3.6. Let D0, D1 be the reduced singular fibers over t= 0, 1. We

assume that D0 +D1 is a normal crossing divisor (abbreviated NCD). Then

tωn ∈ Γ (P1 \ {∞}, f∗Ω1
X/P1(log D0 +D1)).

Proof. Put S = P1 \ {0, 1,∞} and U = f−1(S). Let V :=H1
dR(U/S) be

the bundle and ∇ : V → Ω1
S ⊗ V the Gauss–Manin connection. Let D∞ be

the reduced singular fibers over t=∞ and assume that it is a NCD. Put

T := {0, 1,∞}. Recall that the sheaf Ω1
X/P1(log D) (D :=D0 +D1 +D∞) is

defined by the exact sequence

0−→ f∗Ω1
P1(log T )−→ Ω1

X(log D)−→ Ω1
X/P1(log D)−→ 0.

Let Ve be Deligne’s canonical extension over P1. This is characterized as the

subbundle Ve ⊂ j∗V (j : S ↪→ P1) which satisfies

• ∇ has at most log poles, ∇ : Ve→ Ω1
P1(log(0 + 1 +∞))⊗ Ve,

• The eigenvalues of residue Res(∇) at t= 0, 1,∞ belong to [0, 1).

Then there is an isomorphism

Ve ∼=R1f∗Ω
•
X/P1(log D)

[12, 2.20] and F 1Ve := Ve ∩ j∗F 1V ∼= f∗Ω
1
X/P1(log D) (loc. cit. 4.20 (ii)).

Hence the desired assertion is equivalent to

(3.12) tωn ∈ Γ (P1 \ {∞}, Ve).
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To show this, we give a local frame of Ve at t= 0, 1 explicitly. Let

ηn :=
xan(1− x)bn+1(1− tx)cn

yn
dx,

and put

βχ1 :=

{
−an
N

}
, βχ2 :=

{
−bn
N

}
.

Recall from (3.2) a homology cycle δ := (1− σd1)(1− σd2)u ∈H1(Xt, Z).

Then

(3.13)

∫
δ
ωn = (1− ζ−nd1)(1− ζ−nd2)B(βχ1 , β

χ
2 )2F1(β

χ
1 , β

χ
2 , β

χ
1 + βχ2 ; t),

(3.14)∫
δ
ηn = (1− ζ−nd1)(1− ζ−nd2)B(βχ1 , β

χ
2 + 1)2F1(β

χ
1 , β

χ
2 , 1 + βχ1 + βχ2 ; t).

This shows that ωn and ηn are basis of the χ-part V (χ) of the bundle (over

a Zariski open set of P1 \ {0, 1,∞}). Denote by V (χ)∗ the dual connection,

and by {ω∗n, η∗n} the dual basis. Then(∫
δ
ωn

)
ω∗n +

(∫
δ
ηn

)
η∗n

is annihilated by the dual connection, and hence

(3.15)

d

(∫
δ
ωn

)
ω∗n + d

(∫
δ
ηn

)
η∗n +

(∫
δ
ωn

)
∇(ω∗n) +

(∫
δ
ηn

)
∇(η∗n) = 0.

Now (3.13)–(3.15) together with the formulas

(1− t) d
dt

2F1(a, b, a+ b; t) =
ab

a+ b
2F1(a, b, a+ b+ 1; t),

t
d

dt
2F1(a, b, a+ b+ 1; t)

= (a+ b)( 2F1(a, b, a+ b; t)− 2F1(a, b, a+ b+ 1; t))
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imply

(∇(ω∗n),∇(η∗n)) = dt⊗ (ω∗n, η
∗
n)

(
0 −βχ1 /(1− t)

−βχ2 /t (βχ1 + βχ2 )/t

)
⇐⇒ (∇(ωn),∇(ηn)) = dt⊗ (ωn, ηn)

(
0 βχ2 /t

βχ1 /(1− t) −(βχ1 + βχ2 )/t

)
.

Then it is an elementary linear algebra to compute local frames of Ve:

Ve(χ)|t=0 =

{
〈ωn, t(βχ2 ωn + (βχ1 + βχ1 )ηn)〉 βχ1 + βχ2 6 1,

〈tωn, (βχ1 + βχ2 − 1)ωn + tβχ1 ηn〉 βχ1 + βχ2 > 1,

Ve(χ)|t=1 = 〈ωn, ηn〉.

Now (3.12) is immediate.

Let e0 : µN → E×0 be an injective homomorphism. Then the condition in

Lemma 3.1 is satisfied. Let e :R := Q[µl, µN ]→ E be a projection such that

Ker(e)⊃Ker(e0). Let χ :R→Q be a homomorphism factoring through e.

Fix integers k, n such that

χ(ζ1, ζ2) = ζk1 ζ
n
2 , ∀(ζ1, ζ2) ∈ µl × µN .

Note gcd(n, N) = 1 as e0 : µN → E×0 is injective. Let

(3.16)

βχ1 :=

{
−na
N

}
, βχ2 :=

{
−nb
N

}
, αχ1 := 0, αχ2 := 1− βχ1 − β

χ
2

which do not depend on the choice of n. Then e2πiα
χ
j (resp. e2πiβ

χ
j ) are

eigenvalues of the local monodromy T0 at t= 0 (resp. T∞ at t=∞)

on R1f∗C(χ)∼= C2 (see (3.5)). The relative 1-form ω := tωn satisfies the

conditions (P1), (P2) in [3, Section 4.5]:

(P1)
∫
γt
ω(γt ∈H1(Xt)) is spanned by t2F1(β

χ
1 , β

χ
2 , 1; 1− t) and

t2F1(β
χ
1 , β

χ
2 , β

χ
1 + βχ2 ; t). (This follows from (3.4).)

(P2) ω ∈ Γ (P1 \ {∞}, f∗Ω1
X/P1(log D)). (This is Lemma 3.6.)

We thus can apply the regulator formula [3, Theorem 5.9]. In our

particular case, it is stated as follows (the notation is slightly changed for

the use in below).
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Theorem 3.7. Let e0, e, χ be as above, and let αχi , βχj be as in (3.16).

Assume that k/l, k/l − βχ1 , k/l − β
χ
2 , k/l − β

χ
1 − β

χ
2 6∈ Z. Put

F1(λ) := (1− λ)k/l−1 3F2

(
1, 1, 1− k/l

2− βχ1 , 2− β
χ
2

; (1− λ)−1
)
,

F2(λ) := (1− λ)k/l−1 3F2

(
1, 1, 2− k/l

2− βχ1 , 2− β
χ
2

; (1− λ)−1
)
.

Let ρ(tχ) be the tχ-part of the map ρ in (3.10). Let

ρ(tχ) = (φ1(λ), φ2(λ)) ∈ (Oan)⊕2 ∼= Oan ⊗W2HdR(tχ)

be a local lifting where the above isomorphism is with respect to Q-frame of

W2HdR(tχ). Define rational functions E
(r)
i = E

(r)
i (λ) ∈Q(λ) for r ∈ Z>−1

in the following way. Write a := 2− βχ1 , b := 2− βχ2 . Put

A(s) :=
s(a+ b+ 2s− 3− s(1− λ)−1)

(a+ s− 1)(b+ s− 1)
,

B(s) :=
s(1− s)(1− (1− λ)−1)

(a+ s− 1)(b+ s− 1)
.

Define Ci(s) and Di(s) by(
Ci+1(s)
Di+1(s)

)
=

(
A(s) 1
B(s) 0

) (
Ci(s+ 1)
Di(s+ 1)

)
,

(
C−1(s)
D−1(s)

)
:=

(
0
1

)
,

and define E
(r)
i by

E
(r)
1 = λCr(k/l) + (1− λ)Cr+1(k/l),

E
(r)
2 = λDr(k/l) + (1− λ)Dr+1(k/l).(3.17)

Then for infinitely many integers r > 0, we have

φ1(λ) ≡ C1(1− λ)r[E
(r)
1 (λ)F1(λ) + E

(r)
2 (λ)F2(λ)],

φ2(λ) ≡ C2(1− λ)r−1[E
(r−1)
1 (λ)F1(λ) + E

(r−1)
2 (λ)F2(λ)]

modulo Q(λ) with some C1, C2 ∈Q×.

We note that (N, l, k, n, a, b) in Theorem 3.7 can run over the set of all

6-tuples of integers satisfying

• 0< a, b < N , gcd(N, a, b) = 1 and gcd(n, N) = 1,

• k/l, k/l − βχ1 , k/l − β
χ
2 , k/l − β

χ
1 − β

χ
2 6∈ Z (see (3.16) for definition of βχj ).
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§4. Proof of main theorem

We are now in a position to prove Theorem 2.1 (log formula).

There are the following formulas

(b1 − 1)3F2

(
a1, a2, a3
b1 − 1, b2

; x

)
=

(
b1 − 1 + x

d

dx

)
3F2

(
a1, a2, a3
b1, b2

; x

)
,

a1 · 3F2

(
a1 + 1, a2, a3

b1, b2
; x

)
=

(
a1 + x

d

dx

)
3F2

(
a1, a2, a3
b1, b2

; x

)
,

(a2 − b1)(a1 − b1)(a3 − b1)3F2

(
a1, a2, a3
b1 + 1, b2

; x

)
= θ1

(
3F2

(
a1, a2, a3
b1, b2

; x

))
,

(a1 − b1)(a1 − b2)3F2

(
a1 − 1, a2, a3

b1, b2
; x

)
= θ2

(
3F2

(
a1, a2, a3
b1, b2

; x

))
,

where

θ1 := −a1a2a3 + (a2 − b1)(a1 − b1)(a3 − b1)

+ b1(b2 + (b1 − a1 − a2 − a3 − 1)x)
d

dx
+ b1(x− x2)

d2

dx2

θ2 := (a1 − b1)(a1 − b2)− a2a3x

+ ((b1 + b2 − a1)− (a2 + a3 + 1)x)x
d

dx
+ (1− x)x2

d2

dx2
.

Therefore if one can prove the log formula for 3F2

(
1,1,q
a, b ; x

)
then one

immediately has the log formula for 3F2

(
n1,n2,q+n3

a+n4, b+n5
; x
)

for arbitrary integers

n1, n2 > 0 and n3, n4, n5 ∈ Z.

We keep the setting and the notation in Section 3.5. Suppose that

(4.1) 1 = 2{−sk/l}+

2∑
i=1

{sβχ2 } − {s(β
χ
i − k/l)}, ∀s ∈ Ẑ×.

Then it follows from Corollary 3.5 that W2H (e) is a Tate HdR structure

of type (1, 1). Let us look at the map ρ(tχ) in Theorem 3.7. This turns out

to be the Beilinson regulator by the diagram (3.11). Since W2H (e) is Tate,

it is generated by the divisor classes of the geometric generic fiber Xη of

f
S̃

. This implies that the image of reg0 in (3.11) is generated by the images

of H1
M (D̃i,Q(1)) where Di runs over the generators of the Neron–Severi

group NS(Xη)⊗Q and D̃i→Di is the desingularization. As is well known,

https://doi.org/10.1017/nmj.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.33


FUNCTIONAL LOGARITHMIC FORMULA 45

H1
M (D̃i,Q(1))∼= η× ⊗Q as D̃i is smooth projective, and the Beilinson

regulator on it is given by the logarithmic function. Therefore we have

(4.2) φ1(λ), φ2(λ) ∈Q(λ) + Q(λ) log Q(λ)
×
.

We now apply Theorem 3.7. If one can show that∣∣∣∣∣ E(r)
1 E

(r)
2

E
(r−1)
1 E

(r−1)
2

∣∣∣∣∣ 6= 0

for almost all r > 0, then we have Fi(λ) ∈Q(λ) + Q(λ) log Q(λ)
×

, which

would finish the proof of Theorem 2.1. To do this, recall (3.17). Letting

E
(r)
1 (s) := λCr(s) + (1− λ)Cr+1(s),

E
(r)
2 (s) := λDr(s) + (1− λ)Dr+1(s),

we want to show

(4.3)

∣∣∣∣∣ E(r)
1 (k/l) E

(r)
2 (k/l)

E
(r−1)
1 (k/l) E

(r−1)
2 (k/l)

∣∣∣∣∣ 6= 0

for almost all r > 0. Since(
E

(r+1)
1 (s) E

(r)
1 (s)

E
(r+1)
2 (s) E

(r)
2 (s)

)
=

(
A(s) 1
B(s) 0

)(
E

(r)
1 (s+ 1) E

(r−1)
1 (s+ 1)

E
(r)
2 (s+ 1) E

(r−1)
2 (s+ 1)

)
(4.3) is reduced to showing that∣∣∣∣∣ E(0)

1 (k/l + r) E
(0)
2 (k/l + r)

E
(−1)
1 (k/l + r) E

(−1)
2 (k/l + r)

∣∣∣∣∣ 6= 0

for all integers r. However, this follows from∣∣∣∣∣ E(0)
1 (s) E

(0)
2 (s)

E
(−1)
1 (s) E

(−1)
2 (s)

∣∣∣∣∣ =

∣∣∣∣λ+ (1− λ)A(s) (1− λ)B(s)
1− λ λ

∣∣∣∣
= λ

(a− 1)(b− 1)λ+ s(a+ b− 2)

(s+ a− 1)(s+ b− 1)
,

(a := 2− βχ1 , b := 2− βχ2 )

and the fact βχi 6∈ Z (see (3.16)) and k/l − βχi 6∈ Z as is assumed. This

completes the proof of Theorem 2.1.
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