We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We performed first-principles calculations to obtain the phonon deformation potential (PDP) constants of wurtzite ZnO. The results are in good agreement with available experimental data except for a few PDP constants. We also found that the phonon frequencies of the A1 and B2 modes have relatively stronger nonlinear characteristics than the other modes.
This paper investigated the silicon substrate orientation dependence on the electrical properties of high-κ HfN gate insulator formed by electron-cyclotron-resonance (ECR) plasma sputtering. The effect of N2/4.9%H2 forming-gas annealing (FGA) was studied. By using N2/4.9%H2 FGA at 500°C for 20 min, the interfacial layer (IL) formation was not formed and led to the zero-interface layer (ZIL). The EOTs of 0.47 and 0.51 nm with leakage current of 1.1 and 1.4 A/cm2 (@VFB -1 V) were obtained on p-Si(100) and p-Si(110), respectively. The density of interface states (Dit) with the order of 1011 cm-2eV-1 was obtained on both p-Si(100) and p-Si(110). This suggests that the direct deposition of HfN film with ZIL prevented the degradation of electrical characteristics on the p-Si(100) and p-Si(110) substrate in comparison to the case of oxide-based hafnium gate insulator.