Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:35:40.211Z Has data issue: false hasContentIssue false

X-Ray Diffraction Analysis of Heteroepitaxial Cd1-yZnyTe on GaAs

Published online by Cambridge University Press:  26 February 2011

S. M. Johnson
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, CA 93117
W. L. Ahlgren
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, CA 93117
M. T. Smith
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, CA 93117
B. C. Johnston
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, CA 93117
S. Sen
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, CA 93117
Get access

Abstract

X-ray diffraction techniques were used to evaluate Cd1-yZnyTe grown on GaAs substrate orientations of {100}2°, {111}, {012}, and {123}. High-quality layers having compositions at or close to the CdTe and ZnTe binary end points can be grown on GaAs, but most of the ternary compositions have extremely broad rocking curves. Layers grown on {123} and {012} were found to have large tilts toward {111} about <121> that varied systematically with the lattice mismatch; this is consistent with the mismatch being accommodated by the formation of a low-angle tilt boundary at the interface. {111} layers were found to be twinned, and thus {100}2° and {123} appear to better suited for vapor-phase epitaxial growth (VPE). High-resolution x-ray diffractometer measurements showed that the lattice mismatch is almost entirely taken up by plastic deformation, and only a small tetragonal distortion was measured. CdTe was distorted more than ZnTe, and a greater distortion was measured for layers grown on {100}2° than on {111}, in agreement with estimates made using bulk elastic constants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olego, D. L., Faurie, J. P., Sivananthan, S., and Raccah, P. M., Appl. Phys. Lett. 47, 1172 (1985).Google Scholar
2. Feldman, R. D., Austin, R. F., Dayem, A. H., and Westerwick, E. H., Appl. Phys. Lett. 49, 797 (1986).CrossRefGoogle Scholar
3. Summers, C. J., Torabi, A., Wagner, B. K., Benson, J. D., Stock, S. R., and Huang, P. C., in Materials Technologies for IR Detectors, edited by Besson, J. (Soc. Phot. Opt. Inst. Eng. 659, Bellingham, WA 1986), pp. 153160.Google Scholar
4. Ahlgren, W. L., Johnson, S. M., Smith, E. J., Ruth, R. P., Johnston, B. C., Kalisher, M. H., Cockrum, C. A., James, T. W., Arney, D. L., Ziegler, C. K., and Lick, W., J. Vac. Sci. Technol. (1989), in press.Google Scholar
5. Matthews, J. W., Blakeslee, A. E., and Mader, S., Thin Film Solids 33, 253 (1976).CrossRefGoogle Scholar
6. Ahlgren, E. W. L., Smith, E. J., James, J. B., James, T. W., Ruth, R. P., and Patten, E. A., J.Crystal Growth 86, 198 (1988).Google Scholar
7. Ohki, A., Shibata, N., and Zembutsu, S., J. Appl. Phys. 64, 694 (1988).CrossRefGoogle Scholar
8. Nagai, H., J. Appl. Phys. 45, 3789 (1974).CrossRefGoogle Scholar
9. Olsen, G. H. and Smith, R. T., Phys. Stat. Sol. (a) 31, 739 (1975).CrossRefGoogle Scholar
10. DuMond, J. W. M., Phys. Rev. 52, 872 (1937).Google Scholar
11. Bartels, W. J., J. Vac. Sci. Technol. B1, 338 (1983).Google Scholar
12. Chen, A.-B. and Sher, A., Phys. Rev. B 32, 3695 (1985).Google Scholar
13. Motta, N., Balzorotti, A., Letardi, P., Kisiel, A., Czyzyk, M. T., and Zimnal-Starnawska, M., J. Cryst. Growth 72, 205 (1985).Google Scholar
14. Sen, S., Smith, E. J., Kiele, J. A., Johnson, S. M. and Konkel, W. H., J. Vac. Sci. Technol. (1989), in press.Google Scholar
15. Oron, M., Raizman, A., Shtrikman, H., and Cinader, G., Appl. Phys. Lett. 52, 1059 (1988).Google Scholar
16. Hornstra, J. and Bartels, W. J., J. Cryst. Growth 44, 513 (1978).Google Scholar
17. Bartels, W. J. and Nijman, W., J. Cryst. Growth 44, 518 (1978).Google Scholar
18. Martin, R. M., Phys. Rev. B 1, 4005 (1970).Google Scholar
19. Miles, R., work done at Hughes Research Laboratories, unpublished.Google Scholar
20. Vreeland, T. Jr, Dormmann, A., Tsai, C.-J., and Nicolet, M.-A., in Thin FilmsgStrepses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc., Pittsburgh, PA 1989), in print.Google Scholar
21. Miller, K. T., work done at Hughes Research Laboratories, unpublished.Google Scholar
22. Olego, D. J., Petruzzello, J., Ghandi, S. K., Taskar, N. R., and Bhat, I. B., Appl. Phys. Lett. 51, 127 (1987).CrossRefGoogle Scholar