Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:57:05.612Z Has data issue: false hasContentIssue false

The Two-Step Growth Mechanism of MOCVD GaAs/Si

Published online by Cambridge University Press:  28 February 2011

Koichi Ishida*
Affiliation:
Optoelectronics Joint Research Laboratory1333 Kamnikodanaka, Nakahara-ku, Kawasaki 211, Japan
*
*Present address:NEC Fundamental Research Laboratories4–1–1, Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 213, Japan
Get access

Abstract

The growth mechanism and lattice defects are studied for GaAs/Si grown by the two-step MOCVD growth procedure using transmission electron microscopy (TEM). The large misfit stress between GaAs and Si is relieved by misfit dislocations at the GaAs/Si interface, which are introduced during epitaxial regrowth of the thin (<200A) polycrystalline buffer layer grown at 400∼450°C. The regrown buffer layer is relaxed to a nearly stress free state, and therefore a thick GaAs layer can subsequently be grown at the higher growth temperature (∼750°C). The tensile stress in GaAs at room temperature is shown to be a direct consequence of the misfit stress relaxation at the higher growth temperature. TEM revealed high density (<106cm−2) of the threading dislocations in the GaAs layer, contrary to the results of molten KOH etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Choi, H.K., Turner, G.W., and Tsaur, B-Y., IEEE Electron Device Lett. EDL-7, 271(1986).Google Scholar
[2] Fletcher, R.M., Wagner, D.K. and Ballantyne, J.M., Appl. Phys. Lett. 44, 967 (1984).Google Scholar
[3] Soga, T., Hattori, S., Sakai, S., Takeyasu, M. and Umeno, M., Electron Lett. 20, 916 (1984).Google Scholar
[4] Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
[5] Nishi, S., Inomata, H., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 24 L391 (1985).Google Scholar
[6] Fisher, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J. H. and Washburn, J., J.Appl. Phys. 58, 374 (1985).Google Scholar
[7] Ponce, F.A., Biegelson, D.K., Tramontana, J.C. and Smith, A.J., Material Science Forum 10, 205 (1986).Google Scholar
[8] Rosner, S.J., Koch, S.M. and Harris, J.S., Jr, Appl. Phys. Lett. 49, 1764 (1986).Google Scholar
[9] Bond, W.L., Acta Crystallogr. 13, 814 (1960).Google Scholar
[10] Ishida, K., Akiyama, M. and Nishi, S., Jpn. J. Appl. Phys. 25, L288 (1986).Google Scholar
[11] Ishida, K., Akiyama, M. and Nishi, S., Jpn. J. Appl. Phys. 26, L163 (1987).Google Scholar
[12] Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys, 25, L285 (1986).Google Scholar
[13] Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M., Kaminishi, K., Jpn. J. Appl. Phys. 25, L789 (1986).Google Scholar
[14] Ishida, K., Akiyama, M. and Nishi, S., to be published in Jpn. J. Appl. Phys. Lett.Google Scholar
[15] Fisher, R., Neuman, D., Zabel, H., Morkoc, H., Choi, C. and Otsuka, N., Appl. Phys. Lett. 48, 1223 (1986).Google Scholar