Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:14:56.914Z Has data issue: false hasContentIssue false

Thermodynamics of Paracrystalline Silicon

Published online by Cambridge University Press:  10 February 2011

P. M. Voyles
Affiliation:
Dept. of Physics, Univ. of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
M. M. J. Treacy
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
J. M. Gibson
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439
Get access

Abstract

Fluctuation microscopy experiments have shown that the as-deposited structure of amorphous silicon thin films is paracrystalline. A paracrystal consists of small (< 3 nm in diameter) topologically crystalline grains separated by a disordered matrix. Here we consider the thermodynamics of paracrystalline silicon as a function of the grain size and the temperature. We offer a simple model that qualitatively explains the observed metastability of the ordered structure at low temperature (300 K), the relaxation towards a more disordered structure at intermediate temperatures (600 K), and the recrystallization at high temperatures (1000 K).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., Jacobson, D. C., J. Appl. Phys. 57, 1795 (1985), and references therein.10.1063/1.334406Google Scholar
2 Roorda, S., Doom, S., Sinke, W. C., Scholte, P. M. L. O., and Loenen, E. van, Phys. Rev. Lett. 62, 1880 (1989).10.1103/PhysRevLett.62.1880Google Scholar
3 Donovan, E. P., Spaepen, F., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 55, 1516 (1989).10.1063/1.101593Google Scholar
4 Olson, G. L. and Roth, J. A., in Handbook of Crystal Growth Vol. 3, edited by Hurle, D. T. J. (Elsevier Science, 1994), pp. 257312, and references therein.Google Scholar
5 Treacy, M. M. J. and Gibson, J. M., Acta Cryst. A 52, 212 (1996).10.1107/S0108767395012876Google Scholar
6 Laaziri, K., Kycia, S, Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. Lett. 82, 3460 (1999); Phys. Rev. B 60, 13520 (1999).10.1103/PhysRevLett.82.3460Google Scholar
7 Treacy, M. M. J., Gibson, J. M., and Keblinski, P. J., J. Non-Cryst. Solids 231, 99 (1998).10.1016/S0022-3093(98)00371-8Google Scholar
8 Gibson, J. M. and Treacy, M. M. J., Phys. Rev. Lett. 78, 1074 (1997).10.1103/PhysRevLett.78.1074Google Scholar
9 Treacy, M. M. J., Voyles, P. M., and Gibson, J. M., J. Non-Cryst. Solids 266, 150 (2000).10.1016/S0022-3093(99)00794-2Google Scholar
10 Keblinski, P., Phillpot, S. R., Wolf, D., and Gleiter, H., Phys. Rev. Lett. 77, 2965 (1996).10.1103/PhysRevLett.77.2965Google Scholar
11 Williamson, D. L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P. A., Acco, S., and Saris, F. W., Appl. Phys. Lett. 67, 226 (1995).10.1063/1.114675Google Scholar
12 Spaepen, F., in Amorphous Materials: Modeling of Structure and Properties, edited by Vitek, V. (TMS, Warrendale, PA, 1983), p. 265.Google Scholar
13 Brantley, W. A., J. Appl. Phys. 44, 543 (1973).10.1063/1.1661935Google Scholar
14 Shao, Y., Spaepen, F., and Turnbull, D., Mett. Mat. Trans. A 29, 1825 (1998).10.1007/s11661-998-0006-4Google Scholar
15 Tiller, W. A., The Science of Crystallization: Microscopic and Interfacial Phenomena, (Cambridge University Press, Cambridge, 1991) pp. 327381.10.1017/CBO9780511623158.009Google Scholar