Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:28:13.040Z Has data issue: false hasContentIssue false

Thermal characterization and modeling of intermediate phase formation in 20/80 nm and 10/20 nm Cu/Mg multilayers

Published online by Cambridge University Press:  11 February 2011

M. González-Silveira
Affiliation:
Grup de Física de Materials I, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
J. Rodríguez-Viejo
Affiliation:
Grup de Física de Materials I, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
M.T. Clavaguera-Mora
Affiliation:
Grup de Física de Materials I, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
Get access

Abstract

The kinetics of intermediate phase formation in the Cu/Mg multilayer system is analyzed using Differential Scanning Calorimetry. Three main exothermic processes are found during the continuous DSC treatments. The first two, significantly overlapped, are related to the same process, nucleation and growth of the Mg2Cu along the interface. We interpret differences between the Mg/Cu and Cu/Mg interfaces are at the origin of this unexpected behavior. The third exothermic reaction is due to the growth of the Mg2Cu phase perpendicular to the original interface. A kinetic model is developed which yields calorimetric traces in good agreement with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cotts, E.J., Merg, W.JH., Johnson, W.L., Phys. Rev. Lett. 57, 2295 (1986).Google Scholar
2. Michaelsen, C., Barmak, K., Weihs, T.P., J. Phys. D: Appl. Phys. 30, 3167 (1997).Google Scholar
3. Arcot, B., Murarka, S.P., Clevenguer, L.A., Hong, Q.Z., Ziegler, W. and Harper, J.M., J. Appl. Phys. 76, 5161 (1994).Google Scholar
4. Zhong, Q.Z. and d'Heurle, F.M., J. Appl. Phys. 72, 4036 (1992).Google Scholar
5. Rodríguez-Viejo, J., Gonzalez-Silveira, M. and Clavaguera-Mora, M.T., J. Appl. Phys. (in press).Google Scholar
6. Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, D.A. and Thompson, C.V., Appl. Phys. Lett. 55, 852 (1989).Google Scholar
7. Ma, E., Thompson, C.V. and Clevenger, L.A., J. Appl. Phys. 69, 2211 (1991).Google Scholar
8. Avrami, M., J. Chem. Phys. 7, 1103 (1939).Google Scholar