Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:31:28.487Z Has data issue: false hasContentIssue false

Theoretical Chemical Characterization of Energetic Materials

Published online by Cambridge University Press:  26 February 2011

Betsy Mavity Rice
Affiliation:
[email protected], U. S. Army Research Laboratory, AMSRD-ARL-WM-BD, US ARL, AMSRD-ARL-WM-BD, Bldg. 4600, Aberdeen Proving Ground, MD, 21005-5069, United States, 410-306-1904, 410-306-1909
Edward F. C. Byrd
Affiliation:
Ballistics and Weapons Concepts DivisionWeapons and Materials Research DirectorateU. S. Army Research LaboratoryAberdeen Proving Ground, Maryland 21005-5069
Get access

Abstract

Our research is focused on developing computational capabilities for the prediction of properties of energetic materials associated with performance and sensitivity. Additionally, we want to identify and characterize the dynamic processes that influence conversion of an energetic material to products upon initiation. We are attempting to achieve these goals through the use of standard atomistic simulation methods. In this paper various theoretical chemistry methods and applications to energetic materials will be described. Current capabilities in predicting structures, thermodynamic properties, and dynamic behavior of these materials will be demonstrated. These are presented to exemplify how information generated from atomistic simulations can be used in the design, development, and testing of new energetic materials. In addition to illustrating current capabilities, we will discuss limitations of the methodologies and needs for advancing the state of the art in this area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rice, B. M., in Overviews of Recent Research in Energetic Materials, ed. Thompson, D. L., Brill, T. B., and Shaw, R. W. (World Scientific Publishing 2003)..Google Scholar
2. Politzer, P., in Energetic Materials: Part 1. Decomposition, Crystal and Molecular Properties (Theoretical and Computational Chemistry), ed. Politzer, P. and Murray, J. S., (Elsevier Science, 2003).Google Scholar
3. Chong, D. P., Recent Advances in Computational Chemistry, Volume 1, ed. Chong, D. P. (World Scientific Publishing, 1995).Google Scholar
4. Hehre, W. J., Radom, L., Schleyer, P.v.R., and Pople, J. A., Ab Initio Molecular Orbital Theory (John Wiley & Sons, 1986), p. 271, 298.Google Scholar
5. McLean, A. D. and Chandler, G. S., J. Chem. Phys. 72, 5639 (1980).Google Scholar
6. Krishnan, R., Binkley, J. S., Seeger, R., and Pople, J. A., J. Chem. Phys. 72, 650 (1980).Google Scholar
7. Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
8. Lee, C., Yang, W., and Parr, R. G., Phys. Rev. B 41, 785 (1988).Google Scholar
9. Rice, B. M., Pai, S. V., and Hare, J., Combustion and Flame 118, 445(1999).Google Scholar
10. Byrd, E. F. C. and Rice, B. M., J. Phys. Chem. A, in press.Google Scholar
11. Politzer, P., Murray, J. S., Brinck, T. and Lane, P., Immunoanalysis of Agrochemicals, ACS Symp. Ser. 586, eds. Nelson, J. O., Karu, A. E. and Wong, R. B., (American Chemical Society, 1994).Google Scholar
12. Murray, J. S., Lane, P. and Politzer, P., Molecular Physics, 93, 187 (1998).Google Scholar
13. Rice, B. M. and Hare, J., J. Phys. Chem. A 106, 1770 (2002).Google Scholar
14. Wilson, W. S., Bliss, D. E., Christian, S. L. and Knight, D. J., Naval Weapons Center Technical Publication 7073, April, 1990.Google Scholar
15. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem., B 101, 798 (1997).Google Scholar
16. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B 102 948 (1998).Google Scholar
17. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B 102 6692 (1998).Google Scholar
18. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. A 102, 8386 (1998).Google Scholar
19. Sorescu, D. C.; Rice, B. M. and Thompson, D. L., J. Phys. Chem. A 103, 989 (1999).Google Scholar
20. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B 104, 8406 (2000).Google Scholar
21. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B 105, 9336 (2001).Google Scholar
22. Agrawal, P. M.; Rice, B. M. and Thompson, D. L., J. Chem. Phys. 119, 9617 (2003).Google Scholar
23. Rice, B. M. and Sorescu, D. C., J. Phys. Chem. B 108, 17730 (2004).Google Scholar
24. Sorescu, D. C., Rice, B. M., and Thompson, D. L., J. Phys. Chem. B 103, 6783 (1999).Google Scholar
25. Byrd, E. F. C., Scuseria, G. E., and Chabalowski, C. F., J. Phys. Chem. B 108, 13100 (2004).Google Scholar
26. Kresse, G. and Furthmuller, J., Vienna Ab-initio Simulation Package (VASP): The Guide, VASP Group, Institut fur Materialphysik, Universitat Wien, Sensengasse 8, A-1130 Wien, Vienna, Austria (2003).Google Scholar
27. Perdew, J. P., in Electronic Structures of Solids ‘91, ed. Ziesche, P. and Eschrig, H. (Akademie-Verlag, 1991)Google Scholar
28. Olinger, B., Halleck, P. M., and Cady, H. H., J. Chem. Phys. 62, 4480 (1975).Google Scholar
9. Gruzdkov, Y. A., Dreger, Z. A., and Gupta, Y. M., J. Phys. Chem. A 108 6216 (2004).Google Scholar
30. Lipinska-Kalita, K. E., Pravica, M.G., and Nicol, M., J. Phys. Chem. B 109, 19233 (2005).Google Scholar
31. Klapötke, T., Ludwig-Maximilians University of Munich, private communication (2005).Google Scholar