Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:21:41.171Z Has data issue: false hasContentIssue false

Terahertz Metamaterials on Thin Silicon Nitride Membranes

Published online by Cambridge University Press:  01 February 2011

Xomalin G. Peralta
Affiliation:
[email protected], Sandia National Laboratories, Applied Photonic Microsystems, 1515 Eubank SE, Albuquerque, NM, 87123-1082, United States
C. L. Arrington
Affiliation:
[email protected], Sandia National Laboratories, P.O. Box 5800, MS1082, Albuquerque, NM, 87185, United States
J. D. Williams
Affiliation:
[email protected], University of Alabama, Huntsville, Huntsville, AL, 35899, United States
A. Strikwerda
Affiliation:
[email protected], Boston University, Boston, MA, 02215, United States
R. D. Averitt
Affiliation:
[email protected], Boston University, Boston, MA, 02215, United States
W. J. Padilla
Affiliation:
[email protected], Boston College, Chestnut Hill, MA, 02467, United States
J. F. O'Hara
Affiliation:
[email protected], MPA CINT, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
I. Brener
Affiliation:
[email protected], Sandia National Laboratories, P.O. Box 5800, MS1082, Albuquerque, NM, 87185, United States
Get access

Abstract

The terahertz (THz) region of the electromagnetic spectrum holds promise for spectroscopic imaging of illicit and hazardous materials, and chemical fingerprinting using moment of inertia vibrational transitions. Passive and active devices operating at THz frequencies are currently a challenge, and a promising emerging technology for such devices is optical metamaterials. In particular, a chem/bio sensing scheme based on the sensitivity of metamaterials to their dielectric environment has been proposed but may be limited due to the large concentration of electric flux in the substrate. In addition, there is an interest in fabricating 3D metamaterials, which is a challenge at these and shorter wavelengths due to fabrication constraints. In order to address both of these problems, we have developed a process to fabricate THz metamaterials on free-standing, 1 micron thick silicon nitride membranes. We will present THz transmission spectra and the corresponding simulation results for these metamaterials, comparing their performance with previously fabricated metamaterials on various thick substrates. Finally, we will present a scheme for implementing a 3D THz metamaterial based on stacking and possibly liftoff of these silicon nitride membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S., PRL 84, 4184 (2000).Google Scholar
2. Shelby, R. A., Smith, D. R. and Schultz, S., Science 292, 77 (2001).Google Scholar
3. Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).Google Scholar
4. Witshire, M. C. K., Pendry, J. B., Young, I. R., Larkman, D. J., Gilderdale, D. J. and Hajnal, J. V., Science 291, 849 (2001).Google Scholar
5. Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J. F., Koschny, Th. and Soukoulis, C. M., PRL 95, 203901 (2005).Google Scholar
6. Ferguson, B. and Zhang, X-C, Nature Materials 1, 26 (2002).Google Scholar
7. Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. and Averitt, R. D., PRL 96, 107401 (2006).Google Scholar
8. O'Hara, J. F., Zide, J. M. O., Gossard, A. C., Taylor, A. J. and Averitt, R. D., APL 88, 25, 251119 (2006).Google Scholar
9. CST Microwave Studio ®, © 2005 CST – Computer Simulation Technology, Wellesley Hills, MA, USA. www.cst.comGoogle Scholar
10. Padilla, W. J., Aronsson, M. T., Highstrete, C., Lee, M., Taylor, A. J. and Averitt, R. D., PRB 75, 041102R (2007).Google Scholar
11. Azad, A. K., Dai, J. and Zhang, W., Opt. Lett. 31, 5, 634 (2006).Google Scholar
12. Xu, X.-L., Quan, B.-G., Gu, C.-Z. and Wang, L., J. Opt. Soc. Am. B 23, 6, 1174 (2006).Google Scholar
13. Gay-Balmaz, P. and Martin, O. J. F., J. Appl. Phys. 92, 2929 (2002).Google Scholar
14. Katsarakis, N., Konstantinidis, G., Kostopoulos, A., Penciu, R. S., Gundogdu, T. F., Kafesaki, M., Economou, E. N., Koschny, Th. and Soukoulis, C. M., Opt. Lett. 30, 1348 (2005).Google Scholar
15. O'Hara, J. F., Smirnova, E., Chen, H.-T., Taylor, A. J., Averitt, R. D., Highstrete, C., Lee, M. and Padilla, W. J., J. Nanoeleco. Optoelectron. 2, 90 (2007).Google Scholar
16. Martin, M. C., Hao, Z., Liddle, A., Anderson, E. H., Padilla, W. J., Schurig, D. and Smith, D. R., Conference Proceedings of IEEE IRMMW-THz 2005, vol. 1, 3435 (2005).Google Scholar