Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:31:49.806Z Has data issue: false hasContentIssue false

Synthesis of Several Tungsten (VI) Complex Perovskites, Ba(BIII2/3W1/3)O3 (B = In, Y, Dy, Gd, Sm) by the Polymeric Precursors Method

Published online by Cambridge University Press:  11 February 2011

Antonio F. Fuentes
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila, Mexico.
Guillermo Mendoza-Suarez
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila, Mexico.
J. Iván Escalante-García
Affiliation:
CINVESTAV-IPN Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila, Mexico.
Ulises Amador
Affiliation:
Departamento de CC. Químicas, Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo-CEU, Urbanización Montepríncipe, 28668-Boadilla del Monte, Madrid, Spain.
Khalid Boulahya
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
Get access

Abstract

We show in this work the usefulness of the polymeric precursors method to obtain several Ba(BIII2/3W1/3)O3 (B = In, Y, Dy, Gd, Sm) complex perovskites. Solid resins obtained from solution were treated at different temperatures and characterized by XRD and thermal analysis. BaCO3 and Ba(NO3)2 were the only crystalline species found below 500°C. Tungstates with different stoichiometry evolve from the powdered precursors as the temperature is raised. Formation of perovskite-like phases is evident in all five cases, above 1000°C. XRD results suggest also that trivalent ions do not participate in chemical reactions below that temperature since the presence of any binary phase containing them could be confirmed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kobayashi, K.L., Kimura, T., Sawada, H., Terakura, K. and Tokura, Y., Nature, 395, 677 (1998).Google Scholar
Kawashima, S., Nishida, M., Ueda, I. and Ouchi, H., J. Amer. Ceram. Soc. 66, 421 (1983).Google Scholar
Yasuda, N., Fujimoto, S. and Tanaka, K., J. Phys. D: Appl. Phys. 18, 1909 (1985).Google Scholar
4. Teraoka, Y., Wei, M.-D. and Kagawa, S., J. Mater. Chem. 8, 2323 (1998).Google Scholar
5. Palai, R., Choudhary, R.N.P. and Tewari, H.S., Mater. Chem. Phys. 73, 86 (2002).Google Scholar
6. Hikichi, Y. and Suzuki, S., Mater. Res. Bull. 22, 219 (1987).Google Scholar
7. Balashov, V.L., Lykova, L.N., Kovba, L.M. and Evdokimov, A.A., Zh. Neorg. Khim. 30, 2132 (1985).Google Scholar
8. Pechini, M., U.S. Patent, No. 3330697, July 11, 1967.Google Scholar
9. Tai, L.-W. and Lessing, P.A., J. Mater. Res. 7, 502 (1992).Google Scholar
10. Rodriguez-Carvajal, J., FULLPROF program. In Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the IUCr , Toulouse, (France), 1990; p 17 Google Scholar
11. Shannon, R.D., Acta Cryst. A32, 751 (1976).Google Scholar